Suscripción a Biblioteca: Guest
Portal Digitalde Biblioteca Digital eLibros Revistas Referencias y Libros de Ponencias Colecciones
Atomization and Sprays
Factor de Impacto: 1.262 Factor de Impacto de 5 años: 1.518 SJR: 0.814 SNIP: 1.18 CiteScore™: 1.6

ISSN Imprimir: 1044-5110
ISSN En Línea: 1936-2684

Volumes:
Volumen 29, 2019 Volumen 28, 2018 Volumen 27, 2017 Volumen 26, 2016 Volumen 25, 2015 Volumen 24, 2014 Volumen 23, 2013 Volumen 22, 2012 Volumen 21, 2011 Volumen 20, 2010 Volumen 19, 2009 Volumen 18, 2008 Volumen 17, 2007 Volumen 16, 2006 Volumen 15, 2005 Volumen 14, 2004 Volumen 13, 2003 Volumen 12, 2002 Volumen 11, 2001 Volumen 10, 2000 Volumen 9, 1999 Volumen 8, 1998 Volumen 7, 1997 Volumen 6, 1996 Volumen 5, 1995 Volumen 4, 1994 Volumen 3, 1993 Volumen 2, 1992 Volumen 1, 1991

Atomization and Sprays

DOI: 10.1615/AtomizSpr.v16.i6.50
pages 673-686

MODELING DROPLET SIZE DISTRIBUTION NEAR A NOZZLE OUTLET IN AN ICING WIND TUNNEL

Laszlo E. Kollar
CIGELE/INGIVRE, University of Québec at Chicoutimi, 555 Boulevard de l'Université, Chicoutimi, Québec G7H 2B1, Canada
Masoud Farzaneh
CIGELE/INGIVRE, University of Québec at Chicoutimi, 555 Boulevard de l'Université, Chicoutimi, Québec G7H 2B1, Canada
Anatolij R. Karev
CIGELE/INGIVRE, University of Québec at Chicoutimi, 555 Boulevard de l'Université, Chicoutimi, Québec G7H 2B1, Canada

SINOPSIS

The median volume diameter (MVD) and the droplet size distribution (DSD) in an aerosol cloud under icing conditions are investigated. The procedure involves experimental observation of aerosol size distributions in an icing wind tunnel, computing the MVD by applying an empirical formula, and matching a distribution function to experimental data so as to estimate the DSD. Some of the nozzle dynamic parameters (NDPs), i.e., nozzle water and air pressure, are varied throughout the experiments, and droplet diameter is measured near the nozzle outlet. A new empirical formula is proposed that expresses the relationship between the MVD and the NDPs and, compared to previous studies, provides wind tunnel operators with a more convenient technique to estimate the MVD in the operational range of the selected nozzles. Moreover, the least squares fitting technique is used to find the best-fitting distribution function among published empirical relationships intended to model the DSD for nozzle-generated aerosol. The MVD and DSD obtained by this procedure, together with the NDPs and the thermodynamic parameters, may be used to model and control two-phase flows in icing wind tunnels.