Suscripción a Biblioteca: Guest
Portal Digitalde Biblioteca Digital eLibros Revistas Referencias y Libros de Ponencias Colecciones
Atomization and Sprays
Factor de Impacto: 1.262 Factor de Impacto de 5 años: 1.518 SJR: 0.814 SNIP: 1.18 CiteScore™: 1.6

ISSN Imprimir: 1044-5110
ISSN En Línea: 1936-2684

Volumes:
Volumen 29, 2019 Volumen 28, 2018 Volumen 27, 2017 Volumen 26, 2016 Volumen 25, 2015 Volumen 24, 2014 Volumen 23, 2013 Volumen 22, 2012 Volumen 21, 2011 Volumen 20, 2010 Volumen 19, 2009 Volumen 18, 2008 Volumen 17, 2007 Volumen 16, 2006 Volumen 15, 2005 Volumen 14, 2004 Volumen 13, 2003 Volumen 12, 2002 Volumen 11, 2001 Volumen 10, 2000 Volumen 9, 1999 Volumen 8, 1998 Volumen 7, 1997 Volumen 6, 1996 Volumen 5, 1995 Volumen 4, 1994 Volumen 3, 1993 Volumen 2, 1992 Volumen 1, 1991

Atomization and Sprays

DOI: 10.1615/AtomizSpr.2017017448
pages 303-317

ANALYSIS METHODS FOR DIRECT NUMERICAL SIMULATIONS OF PRIMARY BREAKUP OF SHEAR-THINNING LIQUID JETS

Moritz Ertl
Institute of Aerospace Thermodynamics, University of Stuttgart, 70569 Stuttgart, Germany
Bernhard Weigand
Universität Stuttgart

SINOPSIS

The goal of this work is to improve our understanding of the primary breakup of jets from shear-thinning non-Newtonian liquids. We use direct numerical simulations (DNS) with the volume of fluid method for tracking of the liquid phase and piecewise linear interface calculations for a sharp interface reconstruction. We calculate the shear-thinning viscosity with the Carreau-Yasuda model. We use the inflow velocity profile as well as the shear-thinning properties as varying parameters for different simulations. Different methods of investigation are presented and applied to the simulations. We visualize and describe the influence of shear-thinning viscosity on the breakup process. We quantify the breakup over the liquid surface area and show the influence of different inflow velocities and different shear-thinning viscosities on the breakup. The investigation is refined by analyzing quantities, which define the deformation of the jet surface. A new visualization method is used to track the temporal development of liquid mass. With these methods for analysis we lay a foundation to quantitatively compare different destabilizing parameters and to estimate droplet sizes resulting from the breakup. The combination of these analysis helps to provide a better understanding of shear-thinning breakup in general and brings us closer to predicting resulting droplet sizes.