Suscripción a Biblioteca: Guest
Portal Digitalde Biblioteca Digital eLibros Revistas Referencias y Libros de Ponencias Colecciones
Atomization and Sprays
Factor de Impacto: 1.737 Factor de Impacto de 5 años: 1.518 SJR: 0.814 SNIP: 1.18 CiteScore™: 2.2

ISSN Imprimir: 1044-5110
ISSN En Línea: 1936-2684

Volumes:
Volumen 30, 2020 Volumen 29, 2019 Volumen 28, 2018 Volumen 27, 2017 Volumen 26, 2016 Volumen 25, 2015 Volumen 24, 2014 Volumen 23, 2013 Volumen 22, 2012 Volumen 21, 2011 Volumen 20, 2010 Volumen 19, 2009 Volumen 18, 2008 Volumen 17, 2007 Volumen 16, 2006 Volumen 15, 2005 Volumen 14, 2004 Volumen 13, 2003 Volumen 12, 2002 Volumen 11, 2001 Volumen 10, 2000 Volumen 9, 1999 Volumen 8, 1998 Volumen 7, 1997 Volumen 6, 1996 Volumen 5, 1995 Volumen 4, 1994 Volumen 3, 1993 Volumen 2, 1992 Volumen 1, 1991

Atomization and Sprays

DOI: 10.1615/AtomizSpr.v19.i10.50
pages 969-982

DYNAMICS OF ANEDGE FLAME WITH A FUEL SPRAY

J. Barry Greenberg
Faculty of Aerospace Engineering, Technion-Israel Institute of Technology, Haifa, 32000, Israel
E. Drukmann
Faculty of Aerospace Engineering, Technion-Israel Institute of Technology, Haifa 32000
Y. Mindelis
Faculty of Aerospace Engineering, Technion-Israel Institute of Technology, Haifa 32000
Moshe Matalon
Mechanical Science and Engineering University of Illinois at Urbana-Champaign, Urbana, IL. 61822, USA

SINOPSIS

Two co-flowing streams, one of fuel vapor and droplets and the other of oxygen, separated initially by a splitter plate, are considered. Downstream of the tip of the plate, diffusive mixing of the fuel vapor and oxygen occurs and a mixing layer is formed. What is known as an edge flame is created, located somewhere downstream of the plate’s tip. Attached to this edge flame is a diffusion flame which trails downstream from it. An investigation of the way in which the initial presence of a spray of fuel droplets affects the combustion in the mixing layer is carried out. The spray is described using the sectional approach and a mono-sectional model is adopted. The steady-state behavior of the composite flame structure is described within a diffusional-thermal model context, and the governing nonlinear equations are solved using finite differences. Numerical computations disclose the ways in which the initial droplet load and the vaporization Damkohler number influence the intensity and location of the edge flame and its attendant diffusion flame. The onset of spray flame oscillations is also found to be critically dependent on the spray-related parameters.


Articles with similar content:

LEWIS NUMBER AND VAPORIZATION EFFECTS IN SPRAY DIFFUSION FLAMES
Atomization and Sprays, Vol.3, 1993, issue 4
J. Barry Greenberg, I. Shpilberg
EFFECT OF A FUEL SPRAY ON EDGE FLAME PROPAGATION
Atomization and Sprays, Vol.22, 2012, issue 4
Leonid S. Kagan, J. Barry Greenberg, G. I. Sivashinsky
THE EFFECT OF THERMAL RADIATION ON THE PROPAGATION OF LAMINAR FLAMES
International Heat Transfer Conference 8, Vol.2, 1986, issue
Walter W. Yuen, S.H. Zhu
STEADY INJECTION OF IDENTICAL CLUSTERS OF EVAPORATING DROPS EMBEDDED IN JET VORTICES
Atomization and Sprays, Vol.5, 1995, issue 1
Josette Bellan, K. Harstad
NUMERICAL MODELING OF FLOW AND MIXING OF SINGLE AND INTERACTING SWIRLING CO-ANNULAR JETS
TSFP DIGITAL LIBRARY ONLINE, Vol.3, 2003, issue
Robert-Zoltan Szasz, Laszlo Fuchs