Suscripción a Biblioteca: Guest
Portal Digitalde Biblioteca Digital eLibros Revistas Referencias y Libros de Ponencias Colecciones
Atomization and Sprays
Factor de Impacto: 1.262 Factor de Impacto de 5 años: 1.518 SJR: 0.814 SNIP: 1.18 CiteScore™: 1.6

ISSN Imprimir: 1044-5110
ISSN En Línea: 1936-2684

Volumes:
Volumen 29, 2019 Volumen 28, 2018 Volumen 27, 2017 Volumen 26, 2016 Volumen 25, 2015 Volumen 24, 2014 Volumen 23, 2013 Volumen 22, 2012 Volumen 21, 2011 Volumen 20, 2010 Volumen 19, 2009 Volumen 18, 2008 Volumen 17, 2007 Volumen 16, 2006 Volumen 15, 2005 Volumen 14, 2004 Volumen 13, 2003 Volumen 12, 2002 Volumen 11, 2001 Volumen 10, 2000 Volumen 9, 1999 Volumen 8, 1998 Volumen 7, 1997 Volumen 6, 1996 Volumen 5, 1995 Volumen 4, 1994 Volumen 3, 1993 Volumen 2, 1992 Volumen 1, 1991

Atomization and Sprays

DOI: 10.1615/AtomizSpr.2018025001
pages 65-89

FROM HIGH-FIDELITY NUMERICAL SIMULATIONS OF A LIQUID-FILM ATOMIZATION TO A REGIME CLASSIFICATION

Camille Bilger
Department of Engineering, University of Cambridge, Trumpington Street, Cambridge, CB2 1PZ, United Kingdom
R. Stewart Cant
Department of Engineering, University of Cambridge, Trumpington Street, CB2 1PZ, Cambridge, United Kingdom

SINOPSIS

High-fidelity numerical simulations of spray formation were conducted with the aim of improving fundamental understanding of airblast liquid-film atomization. The gas/liquid interaction in the near-nozzle region is investigated for a multitude of operating conditions in order to extrapolate phenomenological and breakup predictions. To reach this goal, the robust conservative level-set (RCLS) method was used. For a fixed prefilmer geometry, we performed a parametric study on the impact of various liquid and gas velocities on the topological evolution of the liquid interface. The behavior and development of the liquid film is found to be influenced mainly by the relative inertia of the gas and the liquid, the liquid surface tension, and interfacial shear stresses. Preliminary regime maps predicting the prefilming liquid-sheet atomization behavior are constructed based on our numerical results. Three distinct types of "regime" are reported: accumulation, ligament-merging, and three-dimensional wave mode. In addition, these results also show the influence of vortex action and rim-driven dynamics on the breakup mechanism at the atomizer edge. An increase in liquid injection speed leads to the generation of smaller droplets; whereas, an increase in air velocity does not point to one simple conclusion.


Articles with similar content:

A Level-Set-Based Method for Numerical Simulation of Primary Breakup of Cylindrical Liquid Jets
International Journal of Fluid Mechanics Research, Vol.39, 2012, issue 1
Ashraf Balabel
ON SIMULATING PRIMARY ATOMIZATION USING THE REFINED LEVEL SET GRID METHOD
Atomization and Sprays, Vol.21, 2011, issue 4
Marcus Herrmann
DROP DEFORMATION AND ACCELERATION: THE EFFECTS OF INERTIA IN FRAGMENTATION
Atomization and Sprays, Vol.24, 2014, issue 4
Oleksandr G. Girin
COMPUTATIONAL STUDY ON BREAK-UP MECHANISMS OF ISOLATED VAPOUR SLUGS DURING SATURATED FLOW BOILING CONDITIONS
International Heat Transfer Conference 16, Vol.18, 2018, issue
Manolia Andredaki, Nicolas Miche, Lucio Araneo, Anastasios Georgoulas, Marco Marengo, Luca Pietrasanta, Daniele Mangini
MECHANISMS OF AIR-ASSISTED LIQUID ATOMIZATION
Atomization and Sprays, Vol.3, 1993, issue 1
Rolf D. Reitz, A. B. Liu