Suscripción a Biblioteca: Guest
Portal Digitalde Biblioteca Digital eLibros Revistas Referencias y Libros de Ponencias Colecciones
Atomization and Sprays
Factor de Impacto: 1.262 Factor de Impacto de 5 años: 1.518 SJR: 0.814 SNIP: 1.18 CiteScore™: 1.6

ISSN Imprimir: 1044-5110
ISSN En Línea: 1936-2684

Volumen 29, 2019 Volumen 28, 2018 Volumen 27, 2017 Volumen 26, 2016 Volumen 25, 2015 Volumen 24, 2014 Volumen 23, 2013 Volumen 22, 2012 Volumen 21, 2011 Volumen 20, 2010 Volumen 19, 2009 Volumen 18, 2008 Volumen 17, 2007 Volumen 16, 2006 Volumen 15, 2005 Volumen 14, 2004 Volumen 13, 2003 Volumen 12, 2002 Volumen 11, 2001 Volumen 10, 2000 Volumen 9, 1999 Volumen 8, 1998 Volumen 7, 1997 Volumen 6, 1996 Volumen 5, 1995 Volumen 4, 1994 Volumen 3, 1993 Volumen 2, 1992 Volumen 1, 1991

Atomization and Sprays

DOI: 10.1615/AtomizSpr.v10.i2.60
19 pages


Changsoo Jang
Department of Mechanical Engineering, KAIST, Taejon, Korea
Sung-Soo Kim
Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Taejon, South Korea
Sangmin Choi
Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Yusong-gu, Taejon, Korea


Spray characteristics of an intermittent air-assisted fuel injector (AAFI) for a four-stroke gasoline direct-injection engine were investigated using a photographic imaging system. The spatial spray structures were acquired in terms of Sauter mean diameter (D32) and liquid mass concentration. Air entrainment motion was observed just below the poppet valve. Influence of parameters such as ambient air density, supply pressure, and injected air-liquid mass ratio (ALR) was examined. D32 varied from 9 to 30 μm throughout all experimental conditions. The result exhibited a similar tendency to those from diesel injectors in spray tip penetration and atomization characteristics. An intermittent injection caused temporally nonuniform ALR through an injection period. Introducing a set of plausible assumptions, the influence of instantaneous ALR (IALR) on temporary atomization quality was assessed. It showed a comparable trend with that of ALR on D32 of overall spray. The best-fitting curve for drop size distributions of sprays from the AAFI appeared to be a log-Boltzman function. A simple analytical modeling was introduced for predicting mean drop diameters of the AAFI with respect to various operating parameters considered in this study. The model-based equation was found to fit experimental data with an error range comparable to the empirical correlation.