Suscripción a Biblioteca: Guest
Portal Digitalde Biblioteca Digital eLibros Revistas Referencias y Libros de Ponencias Colecciones
Atomization and Sprays
Factor de Impacto: 1.262 Factor de Impacto de 5 años: 1.518 SJR: 0.814 SNIP: 1.18 CiteScore™: 1.6

ISSN Imprimir: 1044-5110
ISSN En Línea: 1936-2684

Volumes:
Volumen 29, 2019 Volumen 28, 2018 Volumen 27, 2017 Volumen 26, 2016 Volumen 25, 2015 Volumen 24, 2014 Volumen 23, 2013 Volumen 22, 2012 Volumen 21, 2011 Volumen 20, 2010 Volumen 19, 2009 Volumen 18, 2008 Volumen 17, 2007 Volumen 16, 2006 Volumen 15, 2005 Volumen 14, 2004 Volumen 13, 2003 Volumen 12, 2002 Volumen 11, 2001 Volumen 10, 2000 Volumen 9, 1999 Volumen 8, 1998 Volumen 7, 1997 Volumen 6, 1996 Volumen 5, 1995 Volumen 4, 1994 Volumen 3, 1993 Volumen 2, 1992 Volumen 1, 1991

Atomization and Sprays

DOI: 10.1615/AtomizSpr.v18.i2.30
pages 163-190

MICROMACHINED ULTRASONIC ATOMIZER FOR LIQUID FUELS

J. M. Meacham
G. W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0405
M. J. Varady
G. W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0405
D. Esposito
G. W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0405
F. L. Degertekin
G. W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0405
Andrei G. Fedorov
Georgia Institute of Technology, George W. Woodruff School of Mechanical Engineering, Parker H. Petit Inst. for Bioengineering and Bioscience, USA

SINOPSIS

A micromachined ultrasonic droplet generator is demonstrated for atomization of liquids for fuel processing. The device comprises a bulk ceramic piezoelectric transducer for ultrasound generation, a reservoir for the fuel, and a silicon micromachined array of liquid horn structures as the ejection nozzles. Since one piezoelectric actuator can drive multiple ejectors of a single array, the array size can be scaled to meet flow rate requirements for higher power applications. Furthermore, due to the planar configuration of the ejector array, it is ideally suited for integration with the planar design of fuel cells. Simulations of the harmonic response of the atomizer confirm that operation at cavity resonances and the use of acoustic wave focusing yield low power consumption. Device operation is demonstrated through atomization of water and methanol from 4.5 to 16 μm diameter orifices at multiple frequencies between 0.5 and 2.5 MHz. The results of high-spatial-resolution visualization experiments combined with a scaling analysis of the fluid mechanics provide a basic understanding of the physics governing the ejection process and allow for a comparison of device operation with different fuels. A high degree of control of the atomization process and highly uniform atomization at low flow rates are achieved with a device that is extremely simple to fabricate, assemble, and operate.


Articles with similar content:

DEVELOPMENT OF THE TRANSMITTING AND RECEIVING CHANNELS FOR TERAHERTZ BAND RELAY SYSTEMS
Telecommunications and Radio Engineering, Vol.74, 2015, issue 11
S.Ye. Kuzmin, O. V. Lutchak, Mikhail E. Ilchenko, T. M. Narytnyk, B.M. Radzikhovsky
DESIGN AND FABRICATION OF THE PIEZOELECTRIC ACTUATED AIR FORCED CONVECTION THERMAL MANAGEMENT AND APPLICATION TO HIGH POWER LED COOLING
Second Thermal and Fluids Engineering Conference, Vol.13, 2017, issue
Chiang-Ho Cheng, An-Shik Yang, Ming-Yu Lai
INEXPENSIVE AIR-ASSIST ATOMIZATION FROM 80,000 ORIFICES
Atomization and Sprays, Vol.16, 2006, issue 7
Steven Collicott, Thomas J. Hoverman
MULTIPLE SCATTERING SUPPRESSION IN PLANAR LASER IMAGING OF DENSE SPRAYS BY MEANS OF STRUCTURED ILLUMINATION
Atomization and Sprays, Vol.20, 2010, issue 2
Elias Kristensson, Mattias Richter, Marcus Aldén
ONCE-THROUGH CONTACTLESS FLOW BOILING IN A MICRO EVAPORATOR
Interfacial Phenomena and Heat Transfer, Vol.2, 2014, issue 3
C. W. M. van de Geld, Cor M. Rops, G. J. Oosterbaan