Suscripción a Biblioteca: Guest
Portal Digitalde Biblioteca Digital eLibros Revistas Referencias y Libros de Ponencias Colecciones
Atomization and Sprays
Factor de Impacto: 1.262 Factor de Impacto de 5 años: 1.518 SJR: 0.814 SNIP: 1.18 CiteScore™: 1.6

ISSN Imprimir: 1044-5110
ISSN En Línea: 1936-2684

Volumes:
Volumen 29, 2019 Volumen 28, 2018 Volumen 27, 2017 Volumen 26, 2016 Volumen 25, 2015 Volumen 24, 2014 Volumen 23, 2013 Volumen 22, 2012 Volumen 21, 2011 Volumen 20, 2010 Volumen 19, 2009 Volumen 18, 2008 Volumen 17, 2007 Volumen 16, 2006 Volumen 15, 2005 Volumen 14, 2004 Volumen 13, 2003 Volumen 12, 2002 Volumen 11, 2001 Volumen 10, 2000 Volumen 9, 1999 Volumen 8, 1998 Volumen 7, 1997 Volumen 6, 1996 Volumen 5, 1995 Volumen 4, 1994 Volumen 3, 1993 Volumen 2, 1992 Volumen 1, 1991

Atomization and Sprays

DOI: 10.1615/AtomizSpr.2014010377
pages 397-424

A NOVEL SPRAY MODEL VALIDATION METHODOLOGY USING LIQUID-PHASE EXTINCTION MEASUREMENTS

Gina M. Magnotti
G. W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0001 USA
Caroline L. Genzale
G. W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0001 USA

SINOPSIS

Physical spray models employed in engine computational fluid dynamics (CFD) simulations are not yet fully predictive; therefore, the breadth of conditions under which these simulations yield valid predictions depends strongly on the "tuning" of these models against available spray measurements. Often, these models are validated and calibrated against spray images based on the elastic scattering of light, or Mie scattering, from liquid structures and droplet clouds. However, these measurements do not typically detect the absolute liquid boundary, so employed computational metrics used to define the liquid boundary in the modeled spray can be physically inconsistent with that detected in Mie-scatter images. To more robustly validate fuel spray model predictions against light scattering measurements, direct comparisons can be made between predicted and measured light scattering intensity signals. Such a comparison provides a more quantitative validation of the liquid phase fuel boundary and further offers the potential to validate local spray structure. In this work, we apply the Lorentz−Mie solution to Maxwell's equations to predict extinction signals due to elastic light scattering, informed by droplet diameter and number density distributions, within a predicted diesel spray. The predicted extinction is compared to experimental results from diffused back-illumination and single line-of-sight extinction measurements to generate a calibrated model of the Engine Combustion Network "Spray A" condition that replicates the measured centerline extinction profile. This spray model is used to inform liquid volume fraction thresholds to similarly define the detected liquid boundary from Mie-scatter images.


Articles with similar content:

STRUCTURE OF A NONEVAPORATING SWIRL INJECTOR SPRAY
Atomization and Sprays, Vol.7, 1997, issue 1
Richard Eskridge, Douglas A. Feikema, John J. Hurt
COMBINED SPRAY MODEL FOR GASOLINE DIRECT INJECTION HOLLOW-CONE SPRAYS
Atomization and Sprays, Vol.20, 2010, issue 4
D. Martin, Reinhold Kneer, Philipp Pischke
TWO-FLUID MODELING OF SPRAY PENETRATION AND DISPERSION UNDER DIESEL ENGINE CONDITIONS
Atomization and Sprays, Vol.15, 2005, issue 3
Venkatraman Iyer, John P. Abraham
Time-Resolved Diffraction Granulometer for Measurements in Transient Sprays
International Journal of Fluid Mechanics Research, Vol.24, 1997, issue 4-6
M. Ledoux, D. Lisiecki
MATHEMATICAL MODELING AND EXPERIMENTAL VERIFICATION OF INTERIOR GAS-LIQUID FLOWS AND OUTFLOW ATOMIZATION PROCESS FOR Y-JET NOZZLES
Atomization and Sprays, Vol.14, 2004, issue 5
Yubao Song, Mingchuan Zhang