Suscripción a Biblioteca: Guest
Portal Digitalde Biblioteca Digital eLibros Revistas Referencias y Libros de Ponencias Colecciones
Atomization and Sprays
Factor de Impacto: 1.262 Factor de Impacto de 5 años: 1.518 SJR: 0.814 SNIP: 1.18 CiteScore™: 1.6

ISSN Imprimir: 1044-5110
ISSN En Línea: 1936-2684

Volumes:
Volumen 29, 2019 Volumen 28, 2018 Volumen 27, 2017 Volumen 26, 2016 Volumen 25, 2015 Volumen 24, 2014 Volumen 23, 2013 Volumen 22, 2012 Volumen 21, 2011 Volumen 20, 2010 Volumen 19, 2009 Volumen 18, 2008 Volumen 17, 2007 Volumen 16, 2006 Volumen 15, 2005 Volumen 14, 2004 Volumen 13, 2003 Volumen 12, 2002 Volumen 11, 2001 Volumen 10, 2000 Volumen 9, 1999 Volumen 8, 1998 Volumen 7, 1997 Volumen 6, 1996 Volumen 5, 1995 Volumen 4, 1994 Volumen 3, 1993 Volumen 2, 1992 Volumen 1, 1991

Atomization and Sprays

DOI: 10.1615/AtomizSpr.2013007484
pages 981-1000

AN INVESTIGATION ON THE BREAKUP OF UNDERWATER BUOYANT OIL JETS: COMPUTATIONAL SIMULATIONS AND EXPERIMENTS

Leandre R. Berard
Department of Mechanical Engineering, University of Massachusetts-Dartmouth
Mehdi Raessi
Department of Mechanical Engineering, University of Massachusetts-Dartmouth
Michael T. Bauer
Department of Mechanical Engineering, University of Massachusetts-Dartmouth
Peter Friedman
University of Massachusetts Dartmouth
Stephen R. Codyer
Department of Mechanical Engineering, University of Massachusetts-Dartmouth

SINOPSIS

We present experimental and computational results on the breakup of underwater buoyant oil jets and plumes at a wide range of Reynolds, Weber, and Richardson numbers and viscosity ratios. The results show three main jet breakup regimes: atomization, skirt-type, and pinch-off. The threshold Weber number for the atomization regime is around 100, which varies slightly with the jet Eotvos number. Furthermore, it is demonstrated that the correlation proposed by Masutani and Adams as the boundary for the atomization regime applies to our broader data set too. The experimental and computational results both suggest that in a buoyancy-driven jet breakup occurs only when the jet is accelerated to a point where the local Richardson number, defined based on properties at breakup, becomes less than 0.4, in which case the local Weber number is above 10. The computational results reveal the mechanisms leading to formation of small droplets around the perimeter of energetic jets and umbrella-shaped jet separations at less energetic cases. The time-averaged lateral expansion of the simulated jets, representing four different conditions, is presented as a function of the height along the jet. The computational results were obtained by using a GPU-accelerated MPI parallel two-phase flow solver, which provides acceleration factors between 3 to 6, compared to running on CPUs only.


Articles with similar content:

AN EXPERIMENTAL INVESTIGATION ON THE RELATIVE ROLES OF ENERGY INPUT, SURFACE TENSION, AND VISCOSITY ON THE BREAKUP OF A LIQUID DROP
Atomization and Sprays, Vol.19, 2009, issue 12
M. G. Rasteiro, J. P. Monteiro, Jorge M. M. Barata
LARGE EDDY SIMULATION OF SINGLE DROPLET AND LIQUID JET PRIMARY BREAKUP USING A COUPLED LEVEL SET/VOLUME OF FLUID METHOD
Atomization and Sprays, Vol.24, 2014, issue 4
James J. McGuirk, Feng Xiao, M. Dianat
LARGE EDDY SIMULATIONS ON ASYMMETRICAL ATOMIZATION OF THE ELLIPTICAL JET WITH CAVITATION
Atomization and Sprays, Vol.29, 2019, issue 2
Zhixia He, Qian Wang, Wei Guan, Tianyi Cao, Tamilselvan Pachiannan, Lian Duan, Liang Zhang
STUDY ON SPRAY INDUCED TURBULENCE USING LARGE EDDY SIMULATIONS
Atomization and Sprays, Vol.25, 2015, issue 4
Siddhartha Banerjee, Christopher J. Rutland
EMBEDDED DNS CONCEPT FOR SIMULATING THE PRIMARY BREAKUP OF AN AIRBLAST ATOMIZER
Atomization and Sprays, Vol.26, 2016, issue 3
Johannes Janicka, Amsini Sadiki, Benjamin Sauer