Suscripción a Biblioteca: Guest
Portal Digitalde Biblioteca Digital eLibros Revistas Referencias y Libros de Ponencias Colecciones
Atomization and Sprays
Factor de Impacto: 1.262 Factor de Impacto de 5 años: 1.518 SJR: 0.814 SNIP: 1.18 CiteScore™: 1.6

ISSN Imprimir: 1044-5110
ISSN En Línea: 1936-2684

Volumes:
Volumen 29, 2019 Volumen 28, 2018 Volumen 27, 2017 Volumen 26, 2016 Volumen 25, 2015 Volumen 24, 2014 Volumen 23, 2013 Volumen 22, 2012 Volumen 21, 2011 Volumen 20, 2010 Volumen 19, 2009 Volumen 18, 2008 Volumen 17, 2007 Volumen 16, 2006 Volumen 15, 2005 Volumen 14, 2004 Volumen 13, 2003 Volumen 12, 2002 Volumen 11, 2001 Volumen 10, 2000 Volumen 9, 1999 Volumen 8, 1998 Volumen 7, 1997 Volumen 6, 1996 Volumen 5, 1995 Volumen 4, 1994 Volumen 3, 1993 Volumen 2, 1992 Volumen 1, 1991

Atomization and Sprays

DOI: 10.1615/AtomizSpr.2014008424
pages 747-760

MEASURING DROPLET SIZE OF AGRICULTURAL SPRAY NOZZLES−MEASUREMENT DISTANCE AND AIRSPEED EFFECTS

Bradley K. Fritz
USDA-ARS-Aerial Application Research Unit, College Station, Texas, USA
W. Clint Hoffmann
USDA-ARS-Aerial Application Research Unit, College Station, Texas, USA
W. E. Bagley
Wilbur-Ellis, 75289 San Antonio, Texas
Greg R. Kruger
University of Nebraska-Lincoln, North Platte, Nebraska 75289
Zbigniew Czaczyk
Poznan University of Life Sciences, Institute of Agricultural Engineering, Wojska Polskiego 28, PL60-637 Poznan, Independent Consultant, os. B. Chrobrego 13/154, 60-681 Poznan, Poland
Ryan S. Henry
University of Nebraska-Lincoln, North Platte, Nebraska 75289

SINOPSIS

With a number of new spray testing laboratories going into operation and each gearing up to measure spray atomization from agricultural spray nozzles using laser diffraction, establishing and following a set of scientific standard procedures is crucial to long-term data generation and standardization across the industry. It has long been recognized that while offering ease of use as compared to other methods, laser diffraction measurements do not account for measurement bias effects due to differential velocities between differing sized spray droplets, and in many cases significantly overestimate the fine droplet portion of the spray. Droplet sizes and velocities were measured for three agricultural flat fan nozzles (8002, 8008, and 6510) each at three spray pressures (138,276, and 414 kPa) at four downstream distances (15.2, 30.5, 45.7, and 76.2 cm) across a range of concurrent air velocities (0.7−80.5 m/s). At air velocities below 6.7 m/s, large gradients in droplet velocities resulted in over-estimation of both the 10% volume diameter (Dv0.1) by more than 10% and the percent volume of the spray less than 100 µm (V<100) was overestimated two- to three-fold. The optimal measurement distance to reduce droplet measurement bias to less than 5% was found to be 30.5 cm with a concurrent air velocity of 6.7 m/s for measuring droplet size from ground nozzles. For aerial spray nozzles, the optimal distance was 45.7 cm. Use of these methods provides for more accurate droplet size data for use in efficacy testing and drift assessments, and significantly increases inter-lab reproducibility.


Articles with similar content:

INFLUENCE OF AIR FLOW DYNAMICS ON DROPLET SIZE IN CONDITIONS OF AIR-ASSISTED SPRAYERS
Atomization and Sprays, Vol.22, 2012, issue 4
Zbigniew Czaczyk
GASOLINE SPRAYS IN UNIFORM CROSSFLOW
Atomization and Sprays, Vol.17, 2007, issue 7
Jim H. Whitelaw, J. M. Nouri
EXPERIMENTAL INVESTIGATION OF DROPLET COALESCENCE IN A FULL-CONE SPRAY FROM A TWO-FLUID NOZZLE USING LASER DIFFRACTION MEASUREMENTS
Atomization and Sprays, Vol.14, 2004, issue 4
M. Valencia-Bejarano, T. A. G. Langrish
EVALUATION OF SPRAY DROPLET SPECTRUM OF SPRAYERS USED FOR VECTOR CONTROL
Atomization and Sprays, Vol.26, 2016, issue 8
Bradley K. Fritz, Noel Cote, Todd W. Walker, Vincent L. Smith, W. Clint Hoffmann, Muhammad Farooq
EVOLUATION OF THE PERFORMANCES OF AN AEROSOL DELIVERY EQUIPMENT SUITABLE FOR CALVES UNDER DIFFERENT CONDITIONS
ICLASS 94
Proceedings of the Sixth International Conference on Liquid Atomization and Spray Systems, Vol.0, 1994, issue
P. Lambert, M. Peckova, B. Genicot, R. Close, P. Lekeux, J.K. Lindsey