Suscripción a Biblioteca: Guest
Portal Digitalde Biblioteca Digital eLibros Revistas Referencias y Libros de Ponencias Colecciones
Atomization and Sprays
Factor de Impacto: 1.262 Factor de Impacto de 5 años: 1.518 SJR: 0.814 SNIP: 1.18 CiteScore™: 1.6

ISSN Imprimir: 1044-5110
ISSN En Línea: 1936-2684

Volumes:
Volumen 29, 2019 Volumen 28, 2018 Volumen 27, 2017 Volumen 26, 2016 Volumen 25, 2015 Volumen 24, 2014 Volumen 23, 2013 Volumen 22, 2012 Volumen 21, 2011 Volumen 20, 2010 Volumen 19, 2009 Volumen 18, 2008 Volumen 17, 2007 Volumen 16, 2006 Volumen 15, 2005 Volumen 14, 2004 Volumen 13, 2003 Volumen 12, 2002 Volumen 11, 2001 Volumen 10, 2000 Volumen 9, 1999 Volumen 8, 1998 Volumen 7, 1997 Volumen 6, 1996 Volumen 5, 1995 Volumen 4, 1994 Volumen 3, 1993 Volumen 2, 1992 Volumen 1, 1991

Atomization and Sprays

DOI: 10.1615/AtomizSpr.v3.i2.60
pages 203-221

SPRAY GROUP COMBUSTION IN A CYLINDRICAL NONPREMIXED COMBUSTOR

Tsung-Leo Jiang
Institute of Aeronautics and Astronautics, National Cheng Kung University, Tainan, Taiwan 70101 ROC
Huei-Huang Chiu
Institute of Aeronautics and Astronautics, National Cheng Kung University, Tainan, Taiwan,70101, ROC

SINOPSIS

The present spray combustion computation studies numerically the effects of spray angles and injected droplet sites on the combustion efficiency and combustion modes of a cylindrical, nonpremixed combustor through implementation of a realistic droplet combustion model. Combustion efficiency increases with increasing spray cone angle, achieving a maximum value at an optimal injected mean droplet size. The predicted combustion modes indicate that fuel is consumed by the complementary processes of droplet and gas-phase combustion, and are significantly influenced by both spray cone angle and injected mean droplet size. Two flame patterns are identified based on injected droplet size. Small droplet spray is characterized by a diffusion flame separating the fuel and air streams, while large droplet spray exhibits intense mixed droplet and gas-phase combustion near the combustor watt. The results show that combustion efficiency for the former and latter increases and decreases, respectively, with increasing injected droplet sizes. The optimal injected droplet size is therefore suggested to occur at the transition between these two flame patterns.


Articles with similar content:

BRACHIAL BURNING AND GASIFICATION SPLIT OF A CONVECTING TWO-DROPLET SYSTEM
Atomization and Sprays, Vol.12, 2002, issue 1-3
Wei-Hsin Chen
A STUDY OF DROPLET COLLISION MODELLING FOR SPRAY FORMATION AND MIXING WITH A TWO-ROW GROUP-HOLE INJECTION NOZZLE FOR DIESEL ENGINES
Atomization and Sprays, Vol.24, 2014, issue 12
N. Ladommatos, Pavlos Aleiferis, Kourosh Karimi, G. Dober, M. Ashrafi-Nik
AN INVESTIGATION ON THE BREAKUP OF UNDERWATER BUOYANT OIL JETS: COMPUTATIONAL SIMULATIONS AND EXPERIMENTS
Atomization and Sprays, Vol.23, 2013, issue 11
Leandre R. Berard, Stephen R. Codyer, Mehdi Raessi, Michael T. Bauer, Peter Friedman
THE RELATIONSHIP BETWEEN LOCAL DROPLET CLOUD SIZE STRUCTURE AND AN INSTABILITY OF A LAMINAR SPRAY DIFFUSION FLAME
ICLASS 94
Proceedings of the Sixth International Conference on Liquid Atomization and Spray Systems, Vol.0, 1994, issue
J. Barry Greenberg, I. Shpilberg
INFLUENCE OF INERT SPRAYS ON EXTINCTION OF PREMIXED FLAMES PROPAGATING IN A DUCT WITH VARYING CROSS-SECTIONAL AREA
Atomization and Sprays, Vol.15, 2005, issue 5
Chih-Hsin Tsai, Ta-Hui Lin