Suscripción a Biblioteca: Guest
Portal Digitalde Biblioteca Digital eLibros Revistas Referencias y Libros de Ponencias Colecciones
Atomization and Sprays
Factor de Impacto: 1.262 Factor de Impacto de 5 años: 1.518 SJR: 0.814 SNIP: 1.18 CiteScore™: 1.6

ISSN Imprimir: 1044-5110
ISSN En Línea: 1936-2684

Volumes:
Volumen 29, 2019 Volumen 28, 2018 Volumen 27, 2017 Volumen 26, 2016 Volumen 25, 2015 Volumen 24, 2014 Volumen 23, 2013 Volumen 22, 2012 Volumen 21, 2011 Volumen 20, 2010 Volumen 19, 2009 Volumen 18, 2008 Volumen 17, 2007 Volumen 16, 2006 Volumen 15, 2005 Volumen 14, 2004 Volumen 13, 2003 Volumen 12, 2002 Volumen 11, 2001 Volumen 10, 2000 Volumen 9, 1999 Volumen 8, 1998 Volumen 7, 1997 Volumen 6, 1996 Volumen 5, 1995 Volumen 4, 1994 Volumen 3, 1993 Volumen 2, 1992 Volumen 1, 1991

Atomization and Sprays

DOI: 10.1615/AtomizSpr.v16.i1.60
pages 83-102

CONE-JET AND MULTIJET ELECTROSPRAYS: TRANSPORT AND EVAPORATION

O. Wilhelm
Particle Technology Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, Sonneggstrasse 3, ML F25, CH- 8092 Zurich, Switzerland
L. Madler
Particle Technology Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, Sonneggstrasse 3, ML F25, CH- 8092 Zurich, Switzerland

SINOPSIS

A numerical model for droplet transport and evaporation of electrosprays in a capillary-plate configuration is compared to droplet size and velocity measurements. Two distinct electrospray modes are investigated: the cone-jet mode with a narrow droplet size distribution and a spraying angle smaller than 45 deg, and the intermittent multijet with a broad size distribution and a spraying angle of approximately 180 deg at the capillary exit. LiCl/isopropanol solutions are deposited on a heated plate. The temperature of the plate is adjusted between 20 and 215°C. The spray droplet transport and evaporation is examined with a phase doppler anemometer (PDA), which is able to track the velocity and size of droplets in the spray. The measurements are compared to the model predictions. For the first time, combined droplet transport and evaporation in the intermittent multijet electrosprays is calculated. Cone-jet and intermittent multijet calculations are in quantitative agreement with the measurements. The applicability of the different spraying modes to thin-film deposition and particle production is discussed with reference to electrospray transport and evaporation behavior.