Suscripción a Biblioteca: Guest
Portal Digitalde Biblioteca Digital eLibros Revistas Referencias y Libros de Ponencias Colecciones
Atomization and Sprays
Factor de Impacto: 1.262 Factor de Impacto de 5 años: 1.518 SJR: 0.814 SNIP: 1.18 CiteScore™: 1.6

ISSN Imprimir: 1044-5110
ISSN En Línea: 1936-2684

Volumes:
Volumen 29, 2019 Volumen 28, 2018 Volumen 27, 2017 Volumen 26, 2016 Volumen 25, 2015 Volumen 24, 2014 Volumen 23, 2013 Volumen 22, 2012 Volumen 21, 2011 Volumen 20, 2010 Volumen 19, 2009 Volumen 18, 2008 Volumen 17, 2007 Volumen 16, 2006 Volumen 15, 2005 Volumen 14, 2004 Volumen 13, 2003 Volumen 12, 2002 Volumen 11, 2001 Volumen 10, 2000 Volumen 9, 1999 Volumen 8, 1998 Volumen 7, 1997 Volumen 6, 1996 Volumen 5, 1995 Volumen 4, 1994 Volumen 3, 1993 Volumen 2, 1992 Volumen 1, 1991

Atomization and Sprays

DOI: 10.1615/AtomizSpr.v20.i12.10
pages 1017-1031

A MAXIMUM ENTROPY APPROACH TO MODELING THE DYNAMICS OF A VAPORIZING SPRAY

Mark R. Archambault
Florida Institute of Technology, Melbourne, Florida 32901, USA

SINOPSIS

Conventional particle tracking techniques used to predict the dynamics and statistics of spray flows can be prohibitively expensive, requiring large computation times and significant data storage. Moreover, because of the discontinuous nature of the spray drops, data from a simulation of the flow do not produce smooth statistics unless the results from many simulations have been averaged. A new model has been presented previously that computes spray statistics directly, without simulating the flow, by closing a set of transport equations for the low-order moments of the droplet probability density function. The model is now extended to include nonlinear drag, heating, and vaporization effects. The Ranz-Marshall correlation and d 2 law are used for droplet heating and vaporization; however, any other correlation could be used without significant change to the overall spray model. Both nonvaporizing and vaporizing test cases with a quasi-one-dimensional flow geometry show very good agreement in comparison with a conventional Lagrangian simulation. With three notable exceptions, the vaporizing and nonvaporizing results are very similar.


Articles with similar content:

THE FULLY LAGRANGIAN APPROACH TO THE ANALYSIS OF PARTICLE/DROPLET DYNAMICS: IMPLEMENTATION INTO ANSYS FLUENT AND APPLICATION TO GASOLINE SPRAYS
Atomization and Sprays, Vol.27, 2017, issue 6
Morgan R. Heikal, Steven M. Begg, Oyuna Rybdylova, Artur K. Gilfanov, Timur S. Zaripov, Sergei S. Sazhin
VOID FRACTION AND WAKE ANALYSIS OF A GAS-LIQUID TWO-PHASE CROSS-FLOW
Multiphase Science and Technology, Vol.26, 2014, issue 4
S. Ghanbarzadeh, Pedram Hanafizadeh, Mohammadreza Momenifar, A. Nouri Geimassi
Evaluation of evaporation models using the Direct Quadrature-based Sectional Method of Moments
ICHMT DIGITAL LIBRARY ONLINE, Vol.0, 2015, issue
W. W. Gumprich, B. Synek, Amsini Sadiki
SIMULATION OF WATER AND OTHER NON-FUEL SPRAYS USING A NEW SPRAY MODEL
Atomization and Sprays, Vol.13, 2003, issue 1
James C. Beck, A. Paul Watkins
UNSTEADINESS IN EFFERVESCENT SPRAYS
Atomization and Sprays, Vol.9, 1999, issue 1
John T. K. Luong