Suscripción a Biblioteca: Guest
Portal Digitalde Biblioteca Digital eLibros Revistas Referencias y Libros de Ponencias Colecciones
Atomization and Sprays
Factor de Impacto: 1.262 Factor de Impacto de 5 años: 1.518 SJR: 0.814 SNIP: 1.18 CiteScore™: 1.6

ISSN Imprimir: 1044-5110
ISSN En Línea: 1936-2684

Volumes:
Volumen 29, 2019 Volumen 28, 2018 Volumen 27, 2017 Volumen 26, 2016 Volumen 25, 2015 Volumen 24, 2014 Volumen 23, 2013 Volumen 22, 2012 Volumen 21, 2011 Volumen 20, 2010 Volumen 19, 2009 Volumen 18, 2008 Volumen 17, 2007 Volumen 16, 2006 Volumen 15, 2005 Volumen 14, 2004 Volumen 13, 2003 Volumen 12, 2002 Volumen 11, 2001 Volumen 10, 2000 Volumen 9, 1999 Volumen 8, 1998 Volumen 7, 1997 Volumen 6, 1996 Volumen 5, 1995 Volumen 4, 1994 Volumen 3, 1993 Volumen 2, 1992 Volumen 1, 1991

Atomization and Sprays

DOI: 10.1615/AtomizSpr.v20.i12.20
pages 1033-1046

EFFECT OF NOZZLE GEOMETRY ON THE ATOMIZATION AND SPRAY CHARACTERISTICS OF GELLED-PROPELLANT SIMULANTS FORMED BY TWO IMPINGING JETS

Syed Fakhri
Department of Mechanical and Nuclear Engineering, The Pennsylvania State University, University Park, PA 16802, USA
Jong Guen Lee
Department of Aerospace Engineering and Engineering Mechanics University of Cincinnati, Cincinnati, Ohio 45221-0070, USA
Richard A. Yetter
The Pennsylvania State University, University Park, Pennsylvania 16802, USA

SINOPSIS

Near- and far-field atomization processes of impinging doublets are experimentally characterized using nongelled and gelled water as working fluids. The main emphasis of the study is on the effect of nozzle geometry, such as orifice inlet shape and aspect ratio, on jet stream surface dynamics and break-up processes before and after jet impingement, respectively. Gelled water jets (non-Newtonian), due to increased viscosity, display fewer surface disturbances than nongelled water jets (Newtonian). As a result, for a given flow rate the sheet formed by impinging jets is much more stable, and the corresponding break-up length is much greater for gelled water than for nongelled water jets. The nozzle aspect ratio has a more significant effect on the near-field jet stream characteristics for both fluids than the orifice inlet shape. Longer nozzles (l /d = 20) form more stable jet streams and delay the breakup of sheets, leading to greater breakup length than that attained with shorter nozzles (l /d = 5). For similar Reynolds numbers and hence, much higher respective flow rates, the droplet size for gelled water is much smaller than that for nongelled water. Also, impinging jets employing gelled water produce sprays with greater spatial distributions and wider ranges of droplet size than jets with nongelled water.


Articles with similar content:

ASYMPTOTIC ANALYSIS OF DROPLET COALESCENCE EFFECTS ON SPRAY DIFFUSION FLAMES IN A UNIDIRECTIONAL SHEAR LAYER FLOW
Atomization and Sprays, Vol.5, 1995, issue 4&5
David Katoshevski, Yoram Tambour
WATER SPRAY CHARACTERIZATION OF A COAXIAL AIR-ASSISTED SWIRLING ATOMIZER AT SONIC CONDITIONS
Atomization and Sprays, Vol.20, 2010, issue 11
Fredrik Engstrom, Magnus Marklund
STEADY AND TRANSIENT DROPLET DISPERSION IN AN AIR-ASSIST INTERNALLY MIXING CONE ATOMIZER
Atomization and Sprays, Vol.21, 2011, issue 12
Kelly W. J. Lim, Steven N. Rogak, Sheldon I. Green, Amir Abbas Aliabadi
LIQUID SHEET DISINTEGRATION BY IMPINGING AIR STREAMS
Atomization and Sprays, Vol.1, 1991, issue 2
Arthur H. Lefebvre, J. E. Beck, T. R. Koblish
MECHANISM OF PERFORATION BASED ON SPREADING PROPERTIES OF EMULSIFIED OILS
Atomization and Sprays, Vol.22, 2012, issue 12
Emilia Hilz, A. W. P. Vermeer, F.A. M. Leermakers, M. A. Cohen Stuart