Suscripción a Biblioteca: Guest
Portal Digitalde Biblioteca Digital eLibros Revistas Referencias y Libros de Ponencias Colecciones
Atomization and Sprays
Factor de Impacto: 1.262 Factor de Impacto de 5 años: 1.518 SJR: 0.814 SNIP: 1.18 CiteScore™: 1.6

ISSN Imprimir: 1044-5110
ISSN En Línea: 1936-2684

Volumes:
Volumen 29, 2019 Volumen 28, 2018 Volumen 27, 2017 Volumen 26, 2016 Volumen 25, 2015 Volumen 24, 2014 Volumen 23, 2013 Volumen 22, 2012 Volumen 21, 2011 Volumen 20, 2010 Volumen 19, 2009 Volumen 18, 2008 Volumen 17, 2007 Volumen 16, 2006 Volumen 15, 2005 Volumen 14, 2004 Volumen 13, 2003 Volumen 12, 2002 Volumen 11, 2001 Volumen 10, 2000 Volumen 9, 1999 Volumen 8, 1998 Volumen 7, 1997 Volumen 6, 1996 Volumen 5, 1995 Volumen 4, 1994 Volumen 3, 1993 Volumen 2, 1992 Volumen 1, 1991

Atomization and Sprays

DOI: 10.1615/AtomizSpr.v20.i12.50
pages 1077-1099

PRESSURE—SWIRL ATOMIZATION OFWATER-IN-OIL EMULSIONS

Christopher D. Bolszo
UCI Combustion Laboratory, Department of Mechanical and Aerospace Engineering, University of California at Irvine, CA 92697-3550
Adrian A. Narvaez
Department of Mechanical and Aerospace Engineering, University of California at Irvine, Irvine, California 92697-3550, USA
Vincent McDonell
Department of Mechanical and Aerospace Engineering, University of California at Irvine, USA
Derek Dunn-Rankin
Department of Mechanical and Aerospace Engineering, University of California, Irvine, CA 92697, USA
William A. Sirignano
Department of Mechanical and Aerospace Engineering, University of California at Irvine, USA

SINOPSIS

The pressure−swirl atomization of surfactant stabilized and natural, unstable water-in-oil emulsion fuel injected into an ambient environment is investigated experimentally. Fuel flow conditions are typical of large-scale gas turbine applications. A specialized setup generates controlled emulsions stabilized by addition of surfactants. The emulsion generation process allows control over the discrete phase (water) droplet size distribution within the emulsions. The spray droplet sizes are measured using laser diffraction and the spray pattern is evaluated using imaging and mechanical patternation. A statistically designed experimental test matrix was executed and the results were subjected to the analysis of variance. We find that emulsification can reduce or increase the average droplet size in the spray depending upon the added amount of water fraction. The atomization process itself can change the size distribution of the discrete phase depending upon the initial sizes present and the injector pressure differential. The fractions of oil and water phases were observed to vary with radial spray angle for the stabilized cases considered. For the conditions studied, the stabilized emulsions performed very similarly to natural unstable emulsions as long as the unstable emulsion was produced shortly prior to atomization (i.e., <1 sec) with sufficient shear as to result in a fine discrete phase droplet size. Overall, the results provide insight into how the emulsion properties influence their atomization. Findings show that injection pressure and emulsion discrete water fraction affect the spray droplet size distribution most substantially, while the fine emulsion water droplet distributions play a less significant role. The composition of the emulsion spray appears to vary spatially and temporally when emulsions are coarse. Stabilized and naturally unstable emulsions demonstrate similar breakup behavior during atomization.


Articles with similar content:

EFFECT OF FUEL PROPERTIES ON SPRAY CHARACTERISTICS OF ALTERNATIVE JET FUELS USING GLOBAL SIZING VELOCIMETRY
Atomization and Sprays, Vol.24, 2014, issue 7
Reza Sadr, Kumaran Kannaiyan
COMPARISON OF WATER-IN-OIL EMULSION ATOMIZATION CHARACTERISTICS FOR LOW- AND HIGH-CAPACITY PRESSURE-SWIRL NOZZLES
Atomization and Sprays, Vol.21, 2011, issue 5
Christopher D. Bolszo, William A. Sirignano, Adrian A. Narvaez, Vincent McDonell, Derek Dunn-Rankin
EFFECT OF THE PROPELLANT MASS FRACTION IN A BINARY MIXTURE ON THE SPRAY CHARACTERISTICS AS GENERATED BY HOMOGENEOUS FLASH BOILING
Atomization and Sprays, Vol.26, 2016, issue 12
Eran Sher, Yeshayahou Levy, Moti Levy
MECHANISM OF PERFORATION BASED ON SPREADING PROPERTIES OF EMULSIFIED OILS
Atomization and Sprays, Vol.22, 2012, issue 12
Emilia Hilz, A. W. P. Vermeer, F.A. M. Leermakers, M. A. Cohen Stuart
EFFECT OF ELASTICITY OF BOGER FLUIDS ON THE ATOMIZATION BEHAVIOR OF AN IMPINGING JET INJECTOR
Atomization and Sprays, Vol.25, 2015, issue 8
Michele Negri, Helmut K. Ciezki