Suscripción a Biblioteca: Guest
Portal Digitalde Biblioteca Digital eLibros Revistas Referencias y Libros de Ponencias Colecciones
Atomization and Sprays
Factor de Impacto: 1.262 Factor de Impacto de 5 años: 1.518 SJR: 0.814 SNIP: 1.18 CiteScore™: 1.6

ISSN Imprimir: 1044-5110
ISSN En Línea: 1936-2684

Volumes:
Volumen 29, 2019 Volumen 28, 2018 Volumen 27, 2017 Volumen 26, 2016 Volumen 25, 2015 Volumen 24, 2014 Volumen 23, 2013 Volumen 22, 2012 Volumen 21, 2011 Volumen 20, 2010 Volumen 19, 2009 Volumen 18, 2008 Volumen 17, 2007 Volumen 16, 2006 Volumen 15, 2005 Volumen 14, 2004 Volumen 13, 2003 Volumen 12, 2002 Volumen 11, 2001 Volumen 10, 2000 Volumen 9, 1999 Volumen 8, 1998 Volumen 7, 1997 Volumen 6, 1996 Volumen 5, 1995 Volumen 4, 1994 Volumen 3, 1993 Volumen 2, 1992 Volumen 1, 1991

Atomization and Sprays

DOI: 10.1615/AtomizSpr.v19.i6.50
pages 567-582

MODELING OF GROUP-HOLE-NOZZLE SPRAYS USING GRID-SIZE-, HOLE-LOCATION-, AND TIME-STEP-INDEPENDENT MODELS

Sung Wook Park
Department of Mechanical Engineering, Hanyang University, Seoul 133-791, Korea
Hyun Kyu Suh
Div. of Mechanical and Automotive Engineering, Kongju National University 275, Budae-dong Chunan City, Chungnam, 330-710 KOREA
Chang Sik Lee
School of Mechanical Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 133-791, Republic of Korea
Neerav Abani
Reacting Gas Dynamics Laboratory
Rolf D. Reitz
Engine Research Center, University of Wisconsin-Madison, Rm 1018A, 1500 Engineering Drive, Madison, Wisconsin 53706, USA

SINOPSIS

A new spray computational fluid dynamics (CFD) model that comprises gas-jet and radius-of-influence collision, mean collision time, and interpolation method improvements was used to reduce grid-size, hole-location, and time-step dependencies in modeling group-hole-nozzle sprays. The spray model was validated against experimental results obtained from spray visualization and phase Doppler particle analyzer systems. The spray characteristics including spray penetration and droplet sizes of group-hole nozzles were also studied. Standard CFD spray models show significant dependencies of grid size, hole location, and time step for the calculated spray penetration of group-hole nozzles. On the other hand, the new spray model reduced the dependencies successfully for the present nonevaporating spray cases. The calculated results agreed well with the experimental results in terms of both spray penetration and SMD distributions. It was found that the sprays of the group-hole nozzle exhibit similar spray penetrations to those of a single-hole nozzle with the same overall hole area. The computations indicate that the group-hole nozzle has advantages in the near field for reducing spray droplet sizes.


Articles with similar content:

IMPINGING DIESEL SPRAYS
Atomization and Sprays, Vol.18, 2008, issue 2
Fredrik Wahlin, Andreas Cronhjort
TOMOGRAPHIC VISUALIZATION OF THE DENSE CORE REGION IN TRANSIENT DIESEL SPRAYS
ICLASS 94
Proceedings of the Sixth International Conference on Liquid Atomization and Spray Systems, Vol.0, 1994, issue
Gregory J. Smallwood, David R. Snelling, Omer L. Gulder
EXPERIMENTAL STUDY OF CONICAL DIESEL NOZZLE ORIFICE GEOMETRY
Atomization and Sprays, Vol.25, 2015, issue 6
Martti Larmi, Ossi Kaario, Tuomo Hulkkonen, Teemu Sarjovaara, Ismo Hamalainen
A STUDY OF DROPLET COLLISION MODELLING FOR SPRAY FORMATION AND MIXING WITH A TWO-ROW GROUP-HOLE INJECTION NOZZLE FOR DIESEL ENGINES
Atomization and Sprays, Vol.24, 2014, issue 12
N. Ladommatos, Pavlos Aleiferis, Kourosh Karimi, G. Dober, M. Ashrafi-Nik
EXPERIMENTAL INVESTIGATION OF NEAR NOZZLE SPRAY STRUCTURE AND VELOCITY FOR A GDI HOLLOWCONE SPRAY
Atomization and Sprays, Vol.20, 2010, issue 12
D. Martin, Reinhold Kneer, Philipp Pischke, M. Cardenas