Suscripción a Biblioteca: Guest
Portal Digitalde Biblioteca Digital eLibros Revistas Referencias y Libros de Ponencias Colecciones
Atomization and Sprays
Factor de Impacto: 1.262 Factor de Impacto de 5 años: 1.518 SJR: 0.814 SNIP: 1.18 CiteScore™: 1.6

ISSN Imprimir: 1044-5110
ISSN En Línea: 1936-2684

Volumes:
Volumen 29, 2019 Volumen 28, 2018 Volumen 27, 2017 Volumen 26, 2016 Volumen 25, 2015 Volumen 24, 2014 Volumen 23, 2013 Volumen 22, 2012 Volumen 21, 2011 Volumen 20, 2010 Volumen 19, 2009 Volumen 18, 2008 Volumen 17, 2007 Volumen 16, 2006 Volumen 15, 2005 Volumen 14, 2004 Volumen 13, 2003 Volumen 12, 2002 Volumen 11, 2001 Volumen 10, 2000 Volumen 9, 1999 Volumen 8, 1998 Volumen 7, 1997 Volumen 6, 1996 Volumen 5, 1995 Volumen 4, 1994 Volumen 3, 1993 Volumen 2, 1992 Volumen 1, 1991

Atomization and Sprays

DOI: 10.1615/AtomizSpr.2013007342
pages 419-442

LARGE EDDY SIMULATION OF HIGH-VELOCITY FUEL SPRAYS: STUDYING MESH RESOLUTION AND BREAKUP MODEL EFFECTS FOR SPRAY A

Armin Wehrfritz
UNSW Australia
Ville Vuorinen
Aalto University, School of Engineering, TKK, Internal Combustion Engine Research Group, Department of Energy Technology, Helsinki University of Technology, Finland
Ossi Kaario
Aalto University, Department of Energy Technology, Aalto University, FI-00076 Aalto, Finland
Martti Larmi
Aalto University, Department of Energy Technology, Aalto University, FI-00076 Aalto, Finland

SINOPSIS

Large eddy simulation (LES) of the nonreacting Spray A target conditions, as defined by the Engine Combustion Network, are carried out and compared to high-quality, experimental validation data. The investigated test case is characterized by a high injection pressure, small nozzle hole diameter, and inert ambient gas conditions at high-temperature and high-pressure. In the present study, implicit LES is used together with the Lagrangian particle tracking approach for the liquid phase to (i) investigate the effect of mesh resolution and (ii) study the influence of droplet breakup modeling on the local and global flow characteristics. Two breakup models are compared at four different mesh resolutions. The results are quantitatively analyzed with respect to integral spray quantities and validated against the experimental data. Qualitative characterization of the local velocities and mixture formation is presented. A good agreement of simulated and measured liquid/vapor penetration is achieved for both breakup models, given a sufficient mesh resolution. However, local differences in droplet diameter and vapor mass are observed between the breakup models in the nozzle vicinity. The overall mixture formation shows little dependency on the breakup modeling approach yet a strong dependency on the mesh resolution.


Articles with similar content:

HIGH-FIDELITY SIMULATION OF FUEL ATOMIZATION IN A REALISTIC SWIRLING FLOW INJECTOR
Atomization and Sprays, Vol.23, 2013, issue 11
Marios Soteriou, Xiaoyi Li
NUMERICAL ANALYSIS OF THE INFLUENCE OF THE JET BREAKUP MODEL FORMULATION ON DIESEL ENGINE COMBUSTION COMPUTATIONS
Atomization and Sprays, Vol.8, 1998, issue 2
M. C. Cameretti, C. Bertoli, P. Belardini
LARGE EDDY SIMULATION OF FUEL-SPRAY UNDER NON-REACTING IC ENGINE CONDITIONS
Atomization and Sprays, Vol.23, 2013, issue 10
E. Pomraning, Qingluan Xue, Sibendu Som, Peter K. Senecal
ON THE MODELING OF A SPRAY IMPINGEMENT ONTO A HOT SURFACE
First Thermal and Fluids Engineering Summer Conference, Vol.8, 2015, issue
Andre R. R. Silva, Christian M. G. Rodrigues, Jorge M. M. Barata
ANALYSIS OF TRANSIENT LIQUID AND VAPOR PHASE PENETRATION FOR DIESEL SPRAYS UNDER VARIABLE INJECTION CONDITIONS
Atomization and Sprays, Vol.21, 2011, issue 6
Raul Payri, Francisco J. Briceno, Jose M. Garcia-Oliver, Jose V. Pastor