Suscripción a Biblioteca: Guest
Portal Digitalde Biblioteca Digital eLibros Revistas Referencias y Libros de Ponencias Colecciones
Atomization and Sprays
Factor de Impacto: 1.262 Factor de Impacto de 5 años: 1.518 SJR: 0.814 SNIP: 1.18 CiteScore™: 1.6

ISSN Imprimir: 1044-5110
ISSN En Línea: 1936-2684

Volumes:
Volumen 29, 2019 Volumen 28, 2018 Volumen 27, 2017 Volumen 26, 2016 Volumen 25, 2015 Volumen 24, 2014 Volumen 23, 2013 Volumen 22, 2012 Volumen 21, 2011 Volumen 20, 2010 Volumen 19, 2009 Volumen 18, 2008 Volumen 17, 2007 Volumen 16, 2006 Volumen 15, 2005 Volumen 14, 2004 Volumen 13, 2003 Volumen 12, 2002 Volumen 11, 2001 Volumen 10, 2000 Volumen 9, 1999 Volumen 8, 1998 Volumen 7, 1997 Volumen 6, 1996 Volumen 5, 1995 Volumen 4, 1994 Volumen 3, 1993 Volumen 2, 1992 Volumen 1, 1991

Atomization and Sprays

DOI: 10.1615/AtomizSpr.2012004338
pages 847-865

EFFECT OF NOZZLE GEOMETRY ON BREAKUP LENGTH AND TRAJECTORY OF LIQUID JET IN SUBSONIC CROSSFLOW

Madjid Birouk
Department of Mechanical and Manufacturing Engineering, University of Manitoba, Winnipeg, MB, R3T 5V6 Canada
Baafour Nyantekyi-Kwakye
Department of Mechanical Engineering, University of Manitoba, Winnipeg, Manitoba, Canada R3T5V6
Neil Popplewell
Department of Mechanical and Manufacturing Engineering, University of Manitoba, Winnipeg, MB, R3T 5V6 Canada

SINOPSIS

The effect of a nozzle's internal geometry on a water jet issuing into a subsonic cross airflow was studied experimentally to determine the jet's breakup length and trajectory. The geometrical parameters considered were the nozzle's diameter, nominal surface roughness, length-to-diameter ratio and contraction angle. Although the nozzles employed were not transparent, near-field photographs and column breakup lengths of a water jet discharged into a quiescent atmosphere (i.e., having no airflow) allowed conditions to be identified that promoted cavitation or hydraulic flip. Results revealed that a nozzle's geometry influenced the corresponding water jet's breakup length only at high momentum flux ratios. Furthermore, the trajectory of a water jet from a nozzle experiencing cavitation or hydraulic flip, when discharged into a subsonic crossflow, was found to be almost insensitive to the nozzle's geometry.


Articles with similar content:

SPRAY BREAKUP MECHANISM FROM THE HOLE-TYPE NOZZLE AND ITS APPLICATIONS
Atomization and Sprays, Vol.10, 2000, issue 3-5
Hiroyuki Hiroyasu
EFFECTS OF CAVITATION AND INTERNAL FLOW ON ATOMIZATION OF A LIQUID JET
Atomization and Sprays, Vol.8, 1998, issue 2
Keiya Nishida, Hiroyuki Hiroyasu, N. Tamaki, M. Shimizu
EFFECT OF NOZZLE GEOMETRY ON THE ATOMIZATION AND SPRAY CHARACTERISTICS OF GELLED-PROPELLANT SIMULANTS FORMED BY TWO IMPINGING JETS
Atomization and Sprays, Vol.20, 2010, issue 12
Jong Guen Lee, Syed Fakhri, Richard A. Yetter
ROLE OF VISCOSITY ON TRAJECTORY OF LIQUID JETS IN A CROSS-AIRFLOW
Atomization and Sprays, Vol.17, 2007, issue 3
Madjid Birouk, C. O. Iyogun, Neil Popplewell
HYSTEREISIS PHENOMENON OF THE IMPINGING JETS INDUCED BY ORIFICE CAVITATION
Journal of Flow Visualization and Image Processing, Vol.10, 2003, issue 3-4
Wennon Huang, Tsung-Leo Jiang, Wei-Hsiang Lai