Suscripción a Biblioteca: Guest
Portal Digitalde Biblioteca Digital eLibros Revistas Referencias y Libros de Ponencias Colecciones
Atomization and Sprays
Factor de Impacto: 1.262 Factor de Impacto de 5 años: 1.518 SJR: 0.814 SNIP: 1.18 CiteScore™: 1.6

ISSN Imprimir: 1044-5110
ISSN En Línea: 1936-2684

Volumes:
Volumen 29, 2019 Volumen 28, 2018 Volumen 27, 2017 Volumen 26, 2016 Volumen 25, 2015 Volumen 24, 2014 Volumen 23, 2013 Volumen 22, 2012 Volumen 21, 2011 Volumen 20, 2010 Volumen 19, 2009 Volumen 18, 2008 Volumen 17, 2007 Volumen 16, 2006 Volumen 15, 2005 Volumen 14, 2004 Volumen 13, 2003 Volumen 12, 2002 Volumen 11, 2001 Volumen 10, 2000 Volumen 9, 1999 Volumen 8, 1998 Volumen 7, 1997 Volumen 6, 1996 Volumen 5, 1995 Volumen 4, 1994 Volumen 3, 1993 Volumen 2, 1992 Volumen 1, 1991

Atomization and Sprays

DOI: 10.1615/AtomizSpr.v12.i123.90
pages 163-186

A PREFERENTIAL VAPORIZATION MODEL FOR MULTICOMPONENT DROPLETS AND SPRAYS

Yangbing Zeng
Department of Mechanical and Industrial Engineering, University of Illinois at Urbana-Champaign, Illinois, USA
Chia-Fon Lee
Department of Mechanical and Industrial Engineering, University of Illinois at Urbana-Champaign, 140 Mechanical Engineering Building, 1206 West Green Street, Urbana, IL 61801

SINOPSIS

A multicomponent vaporization model for spray computations was developed to account for the temperature and concentration nonuniformity inside a droplet due to preferential vaporization and finite diffusion processes. The effect of internal circulation was also included using effective diffusivity. The model was validated through rigorous tests and the results agreed well with accurate finite-difference solutions for temperature temporal variations of nonvaporizing droplets and with the measured mole fraction temporal variations of bi-component droplets. The model was also applied to investigate the vaporization of solid-cone sprays and physical insights on preferential vaporization were revealed. Throughout the tests, comparisons with the widely used infinite diffusion model (limited accuracy, low computational cost) and the simplified vortex model(high accuracy, high cost) were also made. Overall, the accuracy of the present model is close to that of the simplified vortex model, while the computational cost is comparable to that of the infinite diffusion model.


Articles with similar content:

VALIDATION OF THE VSB2 SPRAY MODEL AGAINST SPRAY A AND SPRAY H
Atomization and Sprays, Vol.26, 2016, issue 8
Anne Kosters, A. Karlsson
MODELING HEAT EXCHANGES IN A WATER SPRAY WITH STRONG RADIATIVE TRANSFER PARTICIPATION
ICHMT DIGITAL LIBRARY ONLINE, Vol.16, 2004, issue
A. Collin, Pascal Boulet
TRANSIENT MULTIDIMENSIONAL MODELING OF AIR-BLAST ATOMIZERS
Atomization and Sprays, Vol.13, 2003, issue 4
Louis M. Chiappetta, David P. Schmidt, Ravi K. Madabhushi, Graham M. Goldin
EVAPORATION HEAT LOSS IN THE FLAMELET MODEL FOR DILUTE SPRAY FLAMES
Heat Transfer Research, Vol.47, 2016, issue 9
Minghou Liu, Yiliang Chen, Jing Chen, Minming Zhu
MODELING KINETIC ENERGY DISSIPATION OF BOUNCING DROPLETS FOR LAGRANGIAN SIMULATION OF IMPINGING SPRAYS UNDER HIGH AMBIENT PRESSURES
Atomization and Sprays, Vol.28, 2018, issue 8
Zhenyu ZHANG, Peng Zhang