Suscripción a Biblioteca: Guest
Portal Digitalde Biblioteca Digital eLibros Revistas Referencias y Libros de Ponencias Colecciones
Critical Reviews™ in Eukaryotic Gene Expression
Factor de Impacto: 2.156 Factor de Impacto de 5 años: 2.255 SJR: 0.649 SNIP: 0.599 CiteScore™: 3

ISSN Imprimir: 1045-4403
ISSN En Línea: 2162-6502

Volumes:
Volumen 30, 2020 Volumen 29, 2019 Volumen 28, 2018 Volumen 27, 2017 Volumen 26, 2016 Volumen 25, 2015 Volumen 24, 2014 Volumen 23, 2013 Volumen 22, 2012 Volumen 21, 2011 Volumen 20, 2010 Volumen 19, 2009 Volumen 18, 2008 Volumen 17, 2007 Volumen 16, 2006 Volumen 15, 2005 Volumen 14, 2004 Volumen 13, 2003 Volumen 12, 2002 Volumen 11, 2001 Volumen 10, 2000 Volumen 9, 1999 Volumen 8, 1998 Volumen 7, 1997 Volumen 6, 1996 Volumen 5, 1995 Volumen 4, 1994

Critical Reviews™ in Eukaryotic Gene Expression

DOI: 10.1615/CritRevEukarGeneExpr.v21.i1.10
pages 1-12

Heparan Sulfate-based Treatments for Regenerative Medicine

Bina Rai
Institute of Medical Biology, A*STAR, Singapore
Victor Nurcombe
Institute of Molecular and Cell Biology; and Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
Simon M. Cool
Institute of Molecular and Cell Biology; and Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore

SINOPSIS

This review summarizes the emerging strategies that exploit the glycosaminoglycan sugar, heparan sulfate (HS), either as a substitute for, or as a supplement to growth factor (GF) therapy for regenerative medicine. Excluding autograft, the administration of GFs is currently the most effective treatment for critical bone repair and restoration. However, major hurdles in the clinical development of GF therapies include the high cost, the unwanted side effects, and the toxicity associated with the physiological overdosing required to achieve a successful outcome. These drawbacks may be overcome with the application of particular HS fractions that have been optimized to bind, recruit and enhance the biological activity of endogenous GF at the site of injury. Three HS-based treatments are discussed here: first, the single, localized, and sustained delivery of HS as a stand-alone therapeutic agent; then, the inclusion of an HS component within a delivery device so as to stabilize and potentiate the bioactivity of the incorporated GF; and finally, the growing use of HS mimetics, particularly for bone repair.


Articles with similar content:

Immunocytokines for Cancer Therapy
Forum on Immunopathological Diseases and Therapeutics, Vol.5, 2014, issue 1-2
Dario Neri, Philipp Probst
Fibrin Sealant Tissue Adhesive−Review and Update
Journal of Long-Term Effects of Medical Implants, Vol.15, 2005, issue 3
Roshan Prabhu, William D. Spotnitz
Scaffolds: A Novel Carrier and Potential Wound Healer
Critical Reviews™ in Therapeutic Drug Carrier Systems, Vol.32, 2015, issue 4
Tarun Garg, Chetan Chaudhary
Scaffold: A Novel Carrier for Cell and Drug Delivery
Critical Reviews™ in Therapeutic Drug Carrier Systems, Vol.29, 2012, issue 1
Saahil Arora , R. S. R. Murthy, Onkar Singh, Tarun Garg
T Cell Receptors for Gene Transfer in Adoptive T Cell Therapy
Critical Reviews™ in Immunology, Vol.39, 2019, issue 2
David M. Kranz, Preeti Sharma