Suscripción a Biblioteca: Guest
Portal Digitalde Biblioteca Digital eLibros Revistas Referencias y Libros de Ponencias Colecciones
Critical Reviews™ in Eukaryotic Gene Expression
Factor de Impacto: 1.841 Factor de Impacto de 5 años: 1.927 SJR: 0.649 SNIP: 0.516 CiteScore™: 1.96

ISSN Imprimir: 1045-4403
ISSN En Línea: 2162-6502

Volumes:
Volumen 30, 2020 Volumen 29, 2019 Volumen 28, 2018 Volumen 27, 2017 Volumen 26, 2016 Volumen 25, 2015 Volumen 24, 2014 Volumen 23, 2013 Volumen 22, 2012 Volumen 21, 2011 Volumen 20, 2010 Volumen 19, 2009 Volumen 18, 2008 Volumen 17, 2007 Volumen 16, 2006 Volumen 15, 2005 Volumen 14, 2004 Volumen 13, 2003 Volumen 12, 2002 Volumen 11, 2001 Volumen 10, 2000 Volumen 9, 1999 Volumen 8, 1998 Volumen 7, 1997 Volumen 6, 1996 Volumen 5, 1995 Volumen 4, 1994

Critical Reviews™ in Eukaryotic Gene Expression

DOI: 10.1615/CritRevEukarGeneExpr.v21.i3.10
pages 207-236

Cell-Context Dependent TCF/LEF Expression and Function: Alternative Tales of Repression, De-Repression and Activation Potentials

Catherine D. Mao
University of Kentucky
Stephen W. Byers
Lombardi Comprehensive Cancer Center, Departments of Oncology, Molecular and Cellular Biology, Georgetown University, Washington, DC, USA

SINOPSIS

Wnt signaling controls cell specification and fate during development and adult tissue homeostasis by converging on a small family of DNA binding factors, the T-cell factor/lymphoid enhancer factor (TCF/LEF) family. In response to Wnt signals, TCF/LEF members undergo a transcriptional switch from repression to activation mediated in part by nuclear β-catenin binding and recruitment of co-activator complexes. In mammals, the specificity and fine tuning of this transcriptional switch is also achieved by the cell-context-dependent expression of four members (TCF7, TCF7L1, TCF7L2, and LEF1) and numerous variants, which display differential DNA binding affinity and specificity, repression strength, activation potential, and regulators. TCF7/LEF1 variants are generated by alternative promoters, alternative exon cassettes, and alternative donor/acceptor splicing sites, allowing combinatorial insertion/exclusion of modular functional and regulatory domains. In this review we present mounting evidence for the interdependency of TCF7/LEF1 variant expression and functions with cell lineage and cell state. We also illustrate how the p53 and nuclear receptor family of transcription factors, known to control cell fate and to inhibit Wnt signaling, may participate in the fine tuning of TCF7/LEF1 repression/activation potentials.