Suscripción a Biblioteca: Guest
Portal Digitalde Biblioteca Digital eLibros Revistas Referencias y Libros de Ponencias Colecciones
Critical Reviews™ in Eukaryotic Gene Expression
Factor de Impacto: 1.841 Factor de Impacto de 5 años: 1.927 SJR: 0.649 SNIP: 0.516 CiteScore™: 1.96

ISSN Imprimir: 1045-4403
ISSN En Línea: 2162-6502

Critical Reviews™ in Eukaryotic Gene Expression

DOI: 10.1615/CritRevEukaryotGeneExpr.v14.i3.20
12 pages

Sp1 Control of Gene Expression in Myeloid Cells

Karen K. Resendes
Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02912
Alan G. Rosmarin
Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02912; and Division of Hematology, Brown University Department of Medicine and the Division of Hematology/Oncology, The Miriam Hospital, Providence, RI 02906

SINOPSIS

Gene transcription plays a critical role in the differentiation of myeloid cells. However, there is no single, master regulator of all myeloid genes. Rather, myeloid gene transcription is regulated by the combinatorial effects of a limited number of key transcription factors. Sp1 is a powerful activator of gene transcription in many cell types. Although it is wildly expressed, Sp1 binds and activates the promoters of a large number of important myeloid genes. This presents the paradox of how a widely expressed transcription factor can regulate lineage-specific gene transcription. This review discusses the structure, function, and expression patterns of Sp1 and its related Sp family members. Illustrative examples of the tissue-specific regulation of myeloid target genes are presented. The roles of post-translational modifications of Sp1, alterations in target gene chromatin structure, and important cooperating transcription factors are discussed. Thus, Sp1 serves as a model of how a widely expressed transcription factor regulates the expression of tissue-specific genes.


Articles with similar content:

Histone Deacetylase Co-Repressor Complex Control of Runx2 and Bone Formation
Critical Reviews™ in Eukaryotic Gene Expression, Vol.17, 2007, issue 3
Aswathy K. Nair, Eric D. Jensen, Jennifer J. Westendorf
Nuclear Structure, Gene Expression and Development
Critical Reviews™ in Eukaryotic Gene Expression, Vol.9, 1999, issue 3-4
Karen Brown
Regulatory Controls for Osteoblast Growth and Differentiation: Role of Runx/Cbfa/AML Factors
Critical Reviews™ in Eukaryotic Gene Expression, Vol.14, 2004, issue 1&2
Sayyed Kaleem Zaidi, Janet L. Stein, Jane B. Lian, Martin Montecino, Andre J. van Wijnen, Amjad Javed, Gary S. Stein, Christopher Lengner
Involvement of the Nuclear Matrix in the Control of Skeletal Genes: The NMP1 (YY1), NMP2 (Cbfa1), and NMP4 (Nmp4/CIZ) Transcription Factors
Critical Reviews™ in Eukaryotic Gene Expression, Vol.11, 2001, issue 4
Daniel R. Jones, Kitti Torrungruang, Kanokwan Charoonpatrapong, Janet M. Hock, Andrew J. Watt, Marta B. Alvarez, Simon J. Rhodes, Rita Shah, Joseph P. Bidwell
Hdac-Mediated Control of Endochondral and Intramembranous Ossification
Critical Reviews™ in Eukaryotic Gene Expression, Vol.21, 2011, issue 2
Meghan E. McGee-Lawrence, Elizabeth W. Bradley, Jennifer J. Westendorf