Suscripción a Biblioteca: Guest
Portal Digitalde Biblioteca Digital eLibros Revistas Referencias y Libros de Ponencias Colecciones
Critical Reviews™ in Eukaryotic Gene Expression
Factor de Impacto: 1.841 Factor de Impacto de 5 años: 1.927 SJR: 0.649 SNIP: 0.516 CiteScore™: 1.96

ISSN Imprimir: 1045-4403
ISSN En Línea: 2162-6502

Volumes:
Volumen 30, 2020 Volumen 29, 2019 Volumen 28, 2018 Volumen 27, 2017 Volumen 26, 2016 Volumen 25, 2015 Volumen 24, 2014 Volumen 23, 2013 Volumen 22, 2012 Volumen 21, 2011 Volumen 20, 2010 Volumen 19, 2009 Volumen 18, 2008 Volumen 17, 2007 Volumen 16, 2006 Volumen 15, 2005 Volumen 14, 2004 Volumen 13, 2003 Volumen 12, 2002 Volumen 11, 2001 Volumen 10, 2000 Volumen 9, 1999 Volumen 8, 1998 Volumen 7, 1997 Volumen 6, 1996 Volumen 5, 1995 Volumen 4, 1994

Critical Reviews™ in Eukaryotic Gene Expression

DOI: 10.1615/CritRevEukaryotGeneExpr.2019025150
pages 51-67

Computational Modeling of Bone Cells and Their Biomechanical Behaviors in Responses to Mechanical Stimuli

Liping Wang
Department of Hand surgery, Department of Plastic Reconstructive Surgery, Ningbo No. 6 Hospital, Ningbo, 315040, China; School of Pharmacy and Medical Sciences, and UniSA Cancer Research Institute, University of South Australia, Adelaide, SA 5001, Australia
Jianghui Dong
Department of Hand surgery, Department of Plastic Reconstructive Surgery, Ningbo No. 6 Hospital, Ningbo, 315040, China; School of Pharmacy and Medical Sciences, and UniSA Cancer Research Institute, University of South Australia, Adelaide, SA 5001, Australia
Cory J. Xian
Department of Hand surgery, Department of Plastic Reconstructive Surgery, Ningbo No. 6 Hospital, Ningbo, 315040, China; School of Pharmacy and Medical Sciences, and UniSA Cancer Research Institute, University of South Australia, Adelaide, SA 5001, Australia

SINOPSIS

Bone cells, including osteoblasts, osteoclasts, and osteocytes, have the ability to develop and maintain bone architecture. Although improved experimental testing approaches are increasing our understanding of the complex structures and functions of bone cells and bone, computational models, particularly finite element analyses, are being used to extend this knowledge and to develop a more theoretical understanding of bone cell behaviors. There are many challenges to developing an accurate and validated computational model due to the complex structure and biomechanical behaviors of the bone cells and bone tissue. A better understanding of the geometry and material properties of bone cells and bone will improve our understanding of the bone's biomechanical behaviors. In this review, we summarize and discuss the different geometric representations and material properties that have been used to model the bone cells. The current status of computational models, a comprehensive overview of the modeling methods for the bone cells, and the challenges for validating the models are presented.