Suscripción a Biblioteca: Guest
International Journal of Medicinal Mushrooms

Publicado 12 números por año

ISSN Imprimir: 1521-9437

ISSN En Línea: 1940-4344

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 1.2 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 1.4 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 0.3 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.00066 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.34 SJR: 0.274 SNIP: 0.41 CiteScore™:: 2.8 H-Index: 37

Indexed in

Efficient Transformation of the White Jelly Mushroom Tremella fuciformis (Tremellomycetes) and Its Companion Fungus Annulohypoxylon stygium (Ascomycetes) Mediated by Agrobacterium tumefaciens

Volumen 21, Edición 9, 2019, pp. 921-930
DOI: 10.1615/IntJMedMushrooms.2019031600
Get accessGet access

SINOPSIS

Tremella fuciformis is an edible white jelly mushroom with medicinal qualities. The formation of T. fuciformis fruiting bodies is highly dependent on the presence of Annulohypoxylon stygium under natural conditions and during artificial cultivation. A lack of efficient transformation systems restricts the ability of researchers to functionally characterize the genes in these two interacting fungi. In this study, we tested the utility of the Agrobacterium tumefaciens-mediated transformation of T. fuciformis and A. stygium protoplasts. A. tumefaciens strain EHA105 cells harboring the pTrGEH plasmid, which contains genes for enhanced green fluorescent protein (egfp) and hygromycin B phosphotransferase (hph), was co-cultured with T. fuciformis protoplasts. Meanwhile, EHA105 cells harboring the pAnGRH plasmid, which contains the red fluorescent protein (rfp) and hph genes, was co-cultured with A. stygium protoplasts. The egfp, rfp, and hph genes were under the control of the promoter for gpd, which encodes glyceraldehyde-3-phosphate dehydrogenase. Optimal co-cultivation was achieved with a 1:1 mixture of bacteria (OD600 0.4−0.6) and fungal protoplasts (105/mL) incubated at 25°C in a medium containing 200 μM acetosyringone. The subsequent selection on hygromycin B-containing medium yielded 45 and 187 stable transformants per 105 protoplasts for T. fuciformis and A. stygium, respectively. The integration of the transformed DNA into the two fungal genomes was confirmed by polymerase chain reaction (PCR), Southern blot analysis, fluorescence imaging, and a quantitative real-time PCR. All results confirmed the feasibility of our transformation approach, which may facilitate future functional analyses of T. fuciformis and A. stygium genes.

REFERENCIAS
  1. Hou LH, Chen Y, Ma CJ, Liu J, Chen LG, Ma AM. Effects of environmental factors on dimorphic transition of the jelly mushroom Tremella fuciformis. Cryptogam Mycol. 2011;32(4):421-28.

  2. Zhu H, Yuan Y, Liu J, Zheng L, Chen L, Ma A. Comparing the sugar profiles and primary structures of alkali-extracted water-soluble polysaccharides in cell wall between the yeast and mycelial phases from Tremella fuciformis. J Microbiol. 2016;54:381-86.

  3. Zou Y, Hou X. Extraction optimization, composition analysis, and antioxidation evaluation of polysaccharides from white jelly mushroom, Tremella fuciformis (Tremellomycetes). Int J Med Mushrooms. 2017;19:1113-21.

  4. Xu W, Shen X, Yang F, Han Y, Li R, Xue D, Jiang C. Protective effect of polysaccharides isolated from Tremella fuciformis against radiation-induced damage in mice. J Radiat Res. 2012;53:353-60.

  5. Kiho T, Tsujimura Y, Sakushima M, Usui S, Ukai S. Polysaccharides in fungi. XXXIII. Hypoglycemic activity of an acidic polysaccharide (AC) from Tremella fuciformis. Yakugaku Zasshi. 1994;114:308-15.

  6. Reshetnikov SR, Wasser SP, Duckman I, Tsukor K. Medicinal value of the genus Tremella Pers. (Heterobasidiomycetes) (review). Int J Med Mushrooms. 2000;2:169-93.

  7. Shi ZW, Liu Y, Xu Y, Hong YR, Liu Q, Li XL, Wang ZG. Tremella Polysaccharides attenuated sepsis through inhibiting abnormal CD4+CD25 (high) regulatory T cells in mice. Cell Immunol. 2014;288:60-5.

  8. Wen L, Gao Q, Ma C, Ge Y, You L, Liu RH, Fu X, Liu D. Effect of polysaccharides from Tremella fuciformis on UV-induced photoaging. J Funct Foods. 2016;20:400-10.

  9. Hsieh HM, Ju YM, Rogers JD. Molecular phylogeny of Hypoxylon and closely related genera. Mycologia. 2005;97:844-65.

  10. Deng Y, van Peer AF, Lan FS, Wang QF, Jiang Y, Lian LD, Lu DM, Xie B. Morphological and molecular analysis identifies the associated fungus ("Xianghui") of the medicinal white jelly mushroom, Tremella fuciformis, as Annulohypoxylon stygium. Int J Med Mushrooms. 2016;18:253-60.

  11. Rehman L, Su X, Guo H, Qi X, Cheng H. Protoplast transformation as a potential platform for exploring gene function in Verticillium dahlia. BMC Biotechnol. 2016;16:57.

  12. Chen L, Wang Q, Chen H, Sun G, Liu H, Wang H. Agrobacterium tumefaciens-mediated transformation of Botryosphaeria dothidea. World J Microbiol Biotechnol. 2016;32:106.

  13. Zhu H, Wang TW, Sun SJ, Shen YL, Wei DZ. Chromosomal integration of the Vitreoscilla hemoglobin gene and its physiological actions in Tremella fuciformis. Appl Microbiol Biotechnol. 2006;72:770-76.

  14. Sun SJ, Chen DX, Xie BG, Hu FP, Zheng JG. Isolation of GPD promoter from Tremella fuciformis and driving expression of EGFP gene. DNA Cell Biol. 2009; 28:65-70.

  15. Kang LZ, Li Q, Lin JF, Guo LQ. Biosynthesis of resveratrol in blastospore of the macrofungus Tremella fuciformis. Mol Biotechnol. 2015;57:675-84.

  16. Shin DI, Park HS. Mechanical wounding of yeast-like conidium cells of Tremella fuciformis makes them susceptible to Agrobacterium-mediated transformation. Biosci Biotechnol Biochem. 2013;77:2157-9.

  17. Zhu H, Liu D, Wang Y, Ren D, Zheng L, Chen L, Ma A. Use of the yeast-like cells of Tremella fuciformis as a cell factory to produce a Pleurotus ostreatus hydrophobin. Biotechnol Lett. 2017;39:1167-73.

  18. Liu D, Zhu H, Chen Y, Zheng L, Chen L, Ma A. Cloning and heterologous expression of a hydrophobin gene Ltr.hyd from the tiger milk mushroom Lentinus tuber-regium in yeast-like cells of Tremella fuciformis. Electron J Biotech. 2018;32:6-12.

  19. Bundock P, den Dulk-Ras A, Beijersbergen A, and Hooykaas PJ. Trans-kingdom T-DNA transfer from Agrobacterium tume-faciens to Saccharomyces cerevisiae. EMBO J. 1995;14:3206-14.

  20. de Groot MJA, Bundock P, Hooykaas PJJ, and Beijersbergen AG. Agrobacterium tumefaciens-mediated transformation of filamentous fungi. Nat Biotechnol. 1998;16:839-42.

  21. Kunik T, Tzfira T, Kapulnik Y, Gafni Y, Dingwall C, Citovsky V. Genetic transformation of HeLa cells by Agrobacterium. Proc Natl Acad Sci U S A. 2001;98:1871-6.

  22. Chen X, Stone M, Schlagnhaufer C, Romaine CP. A fruiting body tissue method for efficient Agrobacterium-mediated trans-formation of Agaricus bisporus. Appl Environ Microbiol. 2000;66:4510-13.

  23. Heneghan MN, Porta C, Zhang C, Burton KS, Challen MP, Bailey AM, Foster GD. Characterization of serine proteinase expression in Agaricus bisporus and Coprinopsis cinerea by using green fluorescent protein and the A. bisporus SPR1 promoter. Appl Environ Microbiol. 2009;75:792-801.

  24. Zheng Z, Huang C, Cao L, Xie C, Han R. Agrobacterium tumefaciens-mediated transformation as a tool for insertional mutagenesis in medicinal fungus Cordyceps militaris. Fungal Biol. 2011;115:265-74.

  25. Hatoh K, Izumitsu K, Morita A, Shimizu K, Ohta A, Kawai M, Yamanaka T, Neda H, Ota Y, Tanaka C. Transformation of the mushroom species Hypsizigus marmoreus, Flammulina velutipes, and Grifola frondosa by an Agrobacterium-mediated method using a universal transformation plasmid. Mycoscience. 2013;54:8-12.

  26. Lu Z, Kong X, Lu Z, Xiao M, Chen M, Zhu L, Shen Y, Hu X, Song S. Para-aminobenzoic acid (PABA) synthase enhances thermotolerance of mushroom Agaricus bisporus. PLoS One. 2014;9:e91298.

  27. Zhang J, Shi L, Chen H, Sun Y, Zhao M, Ren A, Chen M, Wang H, Feng Z. An efficient Agrobacterium-mediated transformation method for the edible mushroom Hypsizygus marmoreus. Microbiol Res. 2014;169:741-48.

  28. Zubieta MP, da Silva Coelho I, de Queiroz MV, de Araujo EF. Agrobacterium tumefaciens-mediated genetic transformation of the ectomycorrhizal fungus Laccaria laccata. Ann Microbiol. 2014;64:1875-78.

  29. Kim S, Ha BS, Ro HS. Current technologies and related issues for mushroom transformation. Mycobiology. 2015;43:1-8.

  30. Cao Y, Jiao R, Xia Y. A strong promoter PMagpd provides a tool for high gene expression in entomopathogenic fungus Metarhizium acridum. Biotechnol Lett. 2012;34:557-62.

  31. Huang X, Lu X, Li JJ. Cloning, characterization and application of a glyceraldehyde-3-phosphate dehydrogenase promoter from Aspergillus terreus. J Ind Microbiol Biotechnol. 2014;41:585-92.

  32. Kuo CY, Chou SY, Huang CT. Cloning of glyceraldehyde-3-phosphate dehydrogenase gene and use of the gpd promoter for transformation in Flammulina velutipes. Appl Microbiol Biotechnol. 2004;65:593-99.

  33. Godio RP, Fouces R, Gudina EJ, Martin JF. Agrobacterium tumefaciens-mediated transformation of the antitumor clavaric acid-producing basidiomycete Hypholoma sublateritium. Curr Genet. 2004;46:287-94.

  34. Li Q, Ma A. Studies on isolation and regeneration of protoplast from Tremella fuciformis mycelium. J Changjiang Vegetables. 2001;9:28-9. (In Chinese with an English abstract).

  35. Li S, Cai H, Xu W, Hu Y, Gao Y, Lin Z. Efficient transformation of the medicinal mushroom Ganoderma lucidum. Plant Mol Biol Rep. 2001;19:383-84.

  36. Li G, Li R, Liu Q, Wang Q, Chen M, Li B. A highly efficient polyethylene glycol-mediated transformation method for mushrooms. FEMS Microbiol Lett. 2006;256: 203-8.

  37. Shi L, Fang X, Li MJ, Mu D, Ren A, Tan Q, Zhao M. Development of a simple and efficient transformation system for the basidiomycetous medicinal fungus Ganoderma lucidum. World J Microbiol Biotechnol. 2012;28:283-91.

  38. Duarte RT, Staats CC, Fungaro MH, Schrank A, Vainsten MH, Furlaneto-Maia L, Nakamura CV, de Souza W, Furlaneto MC. Development of a simple and rapid Agrobacterium tumefaciens-mediated transformation system for the entomopathogenic fungus Metarhizium anisopliae var. acridum. Lett Appl Microbiol. 2007;44:248-54.

  39. Michielse CB, Hooykaas PJ, van den Hondel CA, Ram AF. Agrobacterium-mediated transformation as a tool for functional genomics in fungi. Curr Gene. 2005;48:1-17.

  40. Priyanka D, Gurvinder K. Optimization of different factors for efficient protoplast release from entomopathogenic fungus Metarhizium anisopliae. Ann Microbiol. 2009;59:183-86.

  41. Li L, Yin Q, Liu X, Yang H. An efficient protoplast isolation and regeneration system in Coprinus comatus. Afr J Microbiol Res. 2010;4:459-65.

  42. Ando A, Sumida Y, Negoro H, Suroto DA, Ogawa J, Sakuradani E, Shimizu S. Establishment of Agrobacterium tumefaciens-mediated transformation of an oleaginous fungus, Mortierella alpina 1S-4, and its application for eicosapentaenoic acid producer breeding. Appl Environ Microbiol. 2009;75:5529-35.

1586 Vistas de artículos 41 Descargas de artículos Métrica
1586 PUNTOS DE VISTA 41 DESCARGAS Google
Scholar
CITAS

Artículos con contenido similar:

Agrobacterium tumefaciens-Mediated Transformation of the King Tuber Medicinal Mushroom Lentinus tuber-regium (Agaricomycetes) International Journal of Medicinal Mushrooms, Vol.20, 2018, issue 8
Liguo Chen, Aimin Ma, Yue Chen, Liesheng Zheng, Hanyu Zhu, Dongmei Liu
Expression of Hygromycin B Resistance in Oyster Culinary-Medicinal Mushroom, Pleurotus ostreatus (Jacq.:Fr.)P. Kumm. (Higher Basidiomycetes) Using Three Gene Expression Systems International Journal of Medicinal Mushrooms, Vol.14, 2012, issue 1
Xiaoya Dong, Liyou Qiu, Jinwen Shen, Ke Zhang, Yuancheng Qi, Yuqian Gao
Ergosterol Peroxide from the Egyptian Red Lingzhi or Reishi Mushroom, Ganoderma resinaceum (Agaricomycetes), Showed Preferred Inhibition of MCF-7 over MDA-MB-231 Breast Cancer Cell Lines International Journal of Medicinal Mushrooms, Vol.22, 2020, issue 4
Eman S. Habib, Safwat A. Ahmed, Ahmed K. A. El-Sayed, Amir E. Wahba, Neveen F. El-Sherif, Amira A. El-Fallal, Amany K. Ibrahim
Development of an Expression Plasmid and its Use in Genetic Manipulation of Lingzhi or Reishi Medicinal Mushroom, Ganoderma lucidum (Higher Basidiomycetes) International Journal of Medicinal Mushrooms, Vol.16, 2014, issue 2
Meng-Fei Ren, Jun-Wei Xu, Yi-Long He, Xuya Yu, Sen-Lin Ji
Cloning and Characterization of a Squalene Synthase Gene from the Chaga Medicinal Mushroom, Inonotus obliquus (Agaricomycetes) International Journal of Medicinal Mushrooms, Vol.18, 2016, issue 5
Changgen Li, Xiaoying Cao, Zhujun Zheng, Sun Yong, Ji-Hong Jiang, Panpan Zhang
Portal Digitalde Biblioteca Digital eLibros Revistas Referencias y Libros de Ponencias Colecciones Precios y Políticas de Suscripcione Begell House Contáctenos Language English 中文 Русский Português German French Spain