Suscripción a Biblioteca: Guest
International Journal of Medicinal Mushrooms

Publicado 12 números por año

ISSN Imprimir: 1521-9437

ISSN En Línea: 1940-4344

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 1.2 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 1.4 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 0.3 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.00066 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.34 SJR: 0.274 SNIP: 0.41 CiteScore™:: 2.8 H-Index: 37

Indexed in

Medicinal Coprinoid Mushrooms (Agaricomycetes) Distributed in Armenia (Review)

Volumen 22, Edición 3, 2020, pp. 257-267
DOI: 10.1615/IntJMedMushrooms.2020033981
Get accessGet access

SINOPSIS

The coprinoid mushrooms or coprini are species of former genus Coprinus Pers. (Coprinaceae, Agaricomycetes) currently divided into four new genera: Coprinus, Coprinopsis, Coprinellus, and Parasola. The presented review addresses literature data and findings from our recent observations on bioactive compounds (sesquiterpenes, proteins, lectins, phenolics, polysaccharides, fatty acids, etc.) and enzymes (proteases) of 21 coprinoid species distributed in Armenia possessing medicinal properties (antitumor, antibacterial, antifungal, antioxidant, mitogenic, antiprotozoal, hypoglycemic, and others) with potential biotechnological interest.

REFERENCIAS
  1. Redhead SA, Vilgalys R, Moncalvo JM, Johnson J, Hopple JS Jr. Coprinus Pers. and the deposition of Coprinus species sensu lato. Taxon. 2001;50:203-41.

  2. Navarro-Gonzalez M. Growth, fruiting body development and laccase production of selected coprini [PhD thesis]. Goettin gen, Germany: University of Goettingen; 2008.

  3. Badalyan SM, Szafranski K, Hoegger P, Navarro-Gonzalez M, Majcherczyk A, Kues U. New Armenian wood-associated coprinoid species: Coprinopsis strossmayeri and Coprinellus aff. radians. Diversity. 2011;3(1):136-54.

  4. Badalyan SM, Gharibyan NG. Characteristics of mycelial structures of different fungal collections. Yerevan: YSU Press; 2017.

  5. Chang ST, Wasser SP. Current and future research trends in agricultural and biomedical applications of medicinal mushrooms and mushroom products (review). Int J Med Mushrooms. 2018;20(11):1034-48.

  6. De Silva DD, Rapior S, Sudarman S, StadierM, Xu J, Alias SA, Hyde KD. Bioactive metabolites from macrofungi: ethno-pharmacology, biological activities and chemistry. Fungal Divers. 2013;62:1-40.

  7. Kues U, Badalyan SM. Making use of genomic information to explore the biotechnological potential of medicinal mushrooms. In: Agrawal DC, Tsay H-S, Shyur L-F, Wu Y-C, Wang S-Y, editors. Medicinal and aromatic plants of the world. Vol. 4. Singapore: Springer Nature; 2017. p. 397-458.

  8. Badalyan SM, Zambonelli A. Biotechnological exploitation of macrofungi for the production of food, pharmaceuticals and cosmeceuticals. In: Sridhar KR, Deshmukh SK, editors. Advances in macrofungi: diversity, ecology and biotechnology. Boca Raton, FL: CRC Press; 2019. p. 199-230.

  9. Badalyan SM, Barkhudaryan A, Rapior S. Recent progress in research on the pharmacological potential of mushrooms and prospects for their clinical application. In: Agrawal D, Dhanasekaran M, editors. Medicinal mushrooms-recent advances in research and development. Singapore: Springer Nature; 2019. p. 1-70.

  10. Badalyan SM. Biotechnological potential of coprinoid mushrooms. In: Modern state of biotechnological developments and ways of their commercialization. Book of Abstracts. Scientific Seminar. 2012 Sep 11-12; Yerevan, Armenia. p. 55-6.

  11. Ying J, Mao X, Ma Q, Zong Y, Wen H. Icons of medicinal fungi from China. Beijing: Science Press; 1987.

  12. Bailey CJ, Turner SL, Jakeman KJ, Hayes WA. Effect of Coprinus comatus on plasma glucose concentrations in mice. Planta Med. 1984;50:525-6.

  13. Badalyan SM. Edible and medicinal higher Basidiomycetes mushrooms as a source of natural antioxidants. Int J Med Mushrooms. 2003;5(2):153-62.

  14. Badalyan SM, Sisakyan SH. Study of antiprotozoal activity and mitogenic effect of some medicinal mushrooms. Int J Med Mushrooms. 2005;7(4):382-4.

  15. Han C, Xing F, Jiang F, Wang Y. A study on co-effects of Coprinus comatus fermentation liquid and sodium vanadate on the process of inhibiting ascension of blood glucose in mice. Edible Fungi of China. 2003;22(1):39-40.

  16. Han CC, Yuan JH, Wang YZ, Li LJ. Hypoglycemic activity of fermented mushroom of Coprinus comatus rich in vanadium. J Trace Elem Med Biol. 2006;20:191-6.

  17. Gu YH, Leonard J. In vitro effects on proliferation, apoptosis and colony inhibition in ER-dependent and ER-independent human breast cancer cells by selected mushroom species. Oncol Rep. 2006;15:417-23.

  18. Zaidman B-Z, Wasser SP, Nevo E, Mahajna J. Coprinus comatus and Ganoderma lucidum interfere with androgen receptor function in LNCaP prostate cancer cells. Mol Biol Rep. 2008;35(2):107-17.

  19. Yamac M, Zeytinoglu M, Kanbak G, Bayramoglu G, Senturk H. Hypoglycemic effect of crude exopolysaccharides produced by Cerrena unicolor, Coprinus comatus, and Lenzites betulina isolates in streptozotocin-induced diabetic rats. Pharmaceut Biol. 2009;47:168-74.

  20. Tsai S-Y, Tsai H-L, Mau J-L. Antioxidant properties of Coprinus comatus. J Food Biochem. 2009;33:368-89.

  21. Ding Z, Lu Y, Lu Z, LF, Wang Y, Bie X, Wang F, Zhang K. Hypoglycaemic effect of comatin, an antidiabetic substance separated from Coprinus comatus broth, on alloxan-induced-diabetic rats. Food Chem. 2010;121:39-43.

  22. Dotan N, Wasser SP, Mahajna J. The culinary-medicinal mushroom Coprinus comatus as a natural anti-androgenic modulator. Integr Cancer Ther. 2011;10(2):148-59.

  23. Ren J, Shi J-L, Han CH-CH, Liu Z-Q, Guo J-Y. Isolation and biological activity of triglycerides of the fermented mushroom of Coprinus comatus. BMC Complement Altern Med. 2012;12:52-6.

  24. Kalaw SP, Albinto RF. Functional activities of Philippine wild strain of Coprinus comatus (OF Mull: Fr) Pers. and Pleurotus cystidiosus O. K. Mill. grown on rice straw based substrate formulation. Mycosphere. 2014;5(5):646-55.

  25. Park HJ, Yun J, Jang S-H, Kang SN, Jeon B-S, Ko Y-G, Kim H-D, Won CH-K, Kim G-S, Cho J-H. Coprinus comatus cap inhibits adipocyte differentiation via regulation of PPARc and Akt signaling pathway. PLoS One. 2014;9(9):e105809.

  26. Tesanovic K, Pejin B, Sibul P, Matavulj M, Raseta M, Janjusevik R, Karaman M. A comparative overview of antioxidative properties and phenolic profiles of different fungal origins: fruiting bodies and submerged cultures of Coprinus comatus and Coprinellus truncorum. J Food Sci Technol. 2017;54:430-8.

  27. Asatiani M, Wasser SP, Nevo E, Ruimi N, Mahajna J, Reznick AZ. The shaggy ink cap medicinal mushroom, Coprinus comatus (OF Mull: Fr) Pers (Agaricomycetideae) substances interfere with H(2)O(2) induction of the NF-kappa B pathway through inhibition of I kappa B alpha phosphorylation in MCF7 breast cancer cells. Int J Med Mushrooms. 2011;13(1):19-25.

  28. Tsai SY, Tsai HL, Mau JL. Nonvolatile taste components of fruit bodies and mycelia of shaggy ink cap mushroom Coprinus comatus (OF Mull: Fr) Pers (Agaricomycetideae). Int J Med Mushrooms. 2007;9(1):47-55.

  29. Wang W, Di Z, Li R, Tian J. Statistical optimization of the content composition precursors using response surface methodology to enhance agaricoglyceride-A production from the shaggy ink cap medicinal mushroom, Coprinus comatus (higher Basidiomycetes) mycelia. Int J Med Mushrooms. 2015;17(10):977-86.

  30. Cui MM, Zhang HJ, An LG. Tumor growth Inhibition by polysaccharide from Coprinus comatus. World Chin J Digestol. 2002;9:287-90 (in Chinese).

  31. List PH. Uber das Vorkommen von Ergothionein im Schopftintling, Coprinus comatus. Arch Pharm. 1957;290/62(11):35-8.

  32. Han BY, Toyomasu T, Shinozawa T. Induction of apoptosis by Coprinus disseminatus mycelial culture broth extract in human cervical carcinoma cells. Cell Struct Funct. 1999;24:209-15.

  33. Ershova EY, Efremenkova OV, Zenkova VA, Tolstych IV, Dudnik YV. The revealing of antimicrobial activity of strains of the genus Coprinus. Mikol Fitopatol. 2001;35:32-7.

  34. Zenkova OL, Efremenkova OV, Ershova EY, Tolstych IV, Dudnik YV. Antimicrobial activity of medicinal mushrooms from the genus Coprinus (Fr) SF Gray (Agaricomycetideae). Int J Med Mushrooms. 2003;5:37-41.

  35. Walser PJ, Kues U, Aebi M, Kunzler M. Ligand interactions of the Coprinopsis cinerea galectins. Fungal Genet Biol. 2005;42:293-305.

  36. Zahid S, Udenigwe CC, Ata A, Eze MO, Segstro EP, Holloway P. New bioactive natural products from Coprinus micaceus. Nat Prod Res. 2006;20:1283-9.

  37. Pettit GR, Meng Y, Pettit RK, Herald DL, Cichacz ZA, Doubek DL, Richert. Antineoplastic agents. 556. Isolation and structure of coprinastatin 1 from Coprinus cinereus L. J Nat Prod. 2010;73:388-92.

  38. Pettit GR, Meng Y, Pettit RK, Herald DL, Hogan F, Cichacz ZA. Antineoplastic agents 582. Part 1: isolation and structure of a cyclobutane-type sesquiterpene cancer cell growth inhibitor from Coprinus cinereus (Coprinaceae). Bioorg Med Chem. 2010;18:4879-83.

  39. Ou YX, Li YY, Qian XM, Shen YM. Guanacastane-type diterpenoids from Coprinus radians. Phytochemistry. 2012;78:190-6.

  40. Vieira LLA, Hughes AFS, Gil VB, Vaz BMA, Alves MAT, Zani CL, Rosa CA, Rosa LH. Diversity and antimicrobial activities of the fungal endophyte community associated with the traditional Brazilian medicinal plant Solanum cernuum Vell (Solana- ceae). Can J Microbiol. 2012;58:54-66.

  41. Novakovic AR, Karaman MA, Sonja N, Kaisarevic SN, Belovic MM, Radusin TI, Beribaka MB, Ilic NM. Coprinellus dis- seminatus (Pers.) J.E. Lange 1938: in vitro antioxidant and antiproliferative effects. Food Feed Res. 2016;43(2):93-101.

  42. Bu'Lock JD, Darbyshire J. Lagopodin metabolites and artefacts in cultures of Coprinus. Phytochem. 1976;15:2004.

  43. Essig A, Hofmann D, Munch D, Gayathri S, Kunzler M, Kallio PT, Sahl HG, Wider G, Schneider T, Aebi M. Copsin, a novel peptide-based fungal antibiotic interfering with the peptidoglycan synthesis. J Biol Chem. 2014;289:34953-64.

  44. Gonzalez Del Val A, Platas G, Arenal F, Orihuela JC, Garcia M, Hernandez P, Royo I, De Pedro N, Silver LL, Young K, Vicente MF, Pelaez F. Novel illudins from Coprinopsis episcopalis (syn. Coprinus episcopalis), and the distribution of illu- din-like compounds among filamentous fungi. Mycol Res. 2003;107:1201-9.

  45. Badalyan SM, Kues U, Avetisyan HK. Screening of antioxidant activity of several coprinoid mushrooms. In: Sergeev YV, editor. Advances in Medical Mycology. Vol. 5. Proceedings 3rd Russian Congress Medical Mycology; 2005 Mar 24-25; Moscow, Russia. p. 176-8.

  46. Badalyan SM, Kues U, Melikyan LR, Navarro-Gonzales M. Medicinal properties of coprinoid mushrooms (Basidiomycetes, Agaricales). Int J Med Mushrooms. 2005;7:378-80.

  47. Badalyan SM, Melikyan LR, Navarro-Gonzalez M, Kues U. Fibrinolytic activity of several coprinoid mushrooms. In: The 6th International Conference on Mushroom Biology and Mushroom Products; 2008 Sep 29-Oct 3; Bonn, Germany. p. 66-7.

  48. Badalyan SM, Melikyan LR, M Navarro-Gonzalez, U Kues. Antibacterial activity of several corinoid mushrooms. In: Vardapetyan H, editor. Biotechnology Health 2, Proceedings of the International Conference & DAAD Alumni Seminar; 2008 Apr 21-25; Yerevan, Armenia. p. 136-7.

  49. Badalyan SM, Avetisyan HK, Karapetyan HV. Study of mitogenic effect of mycelia of several coprinoid mushrooms. In: Saghiyan AS, editor. State-of-the-Art Biotechnology in Armenia & ISTC Contribution; 2008 Sep 28-Oct 2; Tsakhkadzor, Armenia. p. 204.

  50. Badalyan SM, Melikyan LR, Navarro-Gonzalez M, Kues U. Antifungal activity of several coprinoid mushrooms against filamentous fungi. In: Saghiyan AS, editor. State-of-the-Art Biotechnology in Armenia & ISTC Contribution; 2008 Sep 28-Oct 2; Tsakhkadzor, Armenia. p 141.

  51. Lee IK, Jeong CY, Cho SM, Yun BS, Kim YS, Yu SH, Koshino H, Yoo ID. Illudins C-2 and C-3, new illudin C derivatives from Coprinus atramentarius ASI20013. J Antibiot. 1996;49:821-2.

  52. Yang X, Wan M, Mi K, Feng H, Chan DKO, Yang Q. The quantification of (1,3)-P-glucan in edible and medicinal mushroom polysaccharides by using limulus G test. Mycosystema. 2003;22:296-302.

  53. Banks AM, Barker LAG, Bailey AM, Foster GD. Draft genome sequence of the coprinoid mushroom Coprinopsis strossmayeri. Genome Announc. 2017;5(14):e00044-17.

  54. Yokokawa H, Mitsuhashi T. The sterol composition of mushrooms. Phytochemistry. 1981;20(6):1349-51.

  55. Worthen LR, Stessel GJ, Youngken HW. The occurrence of indole compounds in Coprinus species. Econ Bot. 1962;16:315-8.

  56. Konska G. Lectins of higher fungi (Macromycetes)-their occurrence, physiological role, and biological activity. Int J Med Mushrooms. 2006;8(1):19-30.

  57. Badalyan SM. Fatty acid composition of different collections of coprinoid mushrooms (Agaricomycetes) and their nutritional and medicinal values. Int J Med Mushrooms. 2016;18(10):883-93.

  58. Kues U, Khonsuntia W, Subba S, Dornte B. Volatiles in communication of Agaricomycetes. In: Anke T, Schuffler A, editors. The Mycota: physiology and genetics. vol 15. Springer, Cham; 2018. p. 149-212.

  59. Laatch H, Matthies L. The characteristic odour of Coprinus picaceus: a rapid enrichment procedure for apolar, volatile indoles. Mycologia. 1992;84(2):264-6.

  60. Luo H, Liu Y, Fang L, Li X, Tang N, Zhang K. Coprinus comatus damages nematode cuticles mechanically with spiny balls and produces potent toxins to immobilize nematodes. Appl Environ Microbiol. 2007;73(12):3916-23.

  61. Asatiani MD, Elisashvili VI, Wasser SP, Reznick AZ, Nevo E. Free-radical scavenging activity of submerged mycelium extracts from higher Basidiomycetes mushrooms. Biosci Biotechnol Biochem. 2007;71:3090-2.

  62. Lo H-C, Wasser SP. Medicinal mushrooms for glycemic control in diabetes mellitus: history, current status, future perspectives, and unsolved problems (review). Int J Med Mushrooms. 2011;13(5):401.

  63. Ohtsuka S, Ueno S, Yoshikumi C, Hirose F, Ohmura Y, Wada T, Fujii T, Takahashi E. Polysaccharides having an anti-carcinogenic effect and a method of producing them from species of Basidiomycetes. UK Patent 1331513. 1973 Sep 26.

  64. Denisova NP. Proteases from higher Basidiomycetes. Mikol Fitopathol. 1990;24:478-85.

  65. Denisova NP, Mikhailov VN, Petrishchev NN. Thrombolitic activity of mushroom proteinases: thrombolitic activity of proteinases from Coprinus domesticus, C. cinereus, Cerrena unicolor. Int J Med Mushrooms. 1999;1:187-90.

  66. Badalyan SM, Avetisyan HK, Kues U. Proteolytic activity of several coprinoid mushrooms. Congress Handbook & Abstracts Book 2. 8th International Mycological Congress; 2006 Aug 21-25; Cairns, Australia. p 289.

  67. Coletto B, Ausilia M, Barbara S. Basidiomiceti in relazione all'antibiosi. XIII. Attivita antibiotica dei miceli e dei liquidi colturali. Allionia. 2000;37:253-5.

  68. Avci E, Avci GA, Kose DA. Determination of antioxidant and antimicrobial activities of medically important mushrooms using different solvents and chemical composition via GC/MS analyses. J Food Nutr Res. 2014;2(8):429-34.

  69. Florianowicz T. Inhibition of growth and sporulation of Penicillium expansum by extracts of selected Basidiomycetes. Acta Soc Bot Pol. 2000;69:263-7.

  70. Badalyan SM. Screening of antifungal activity of several Basidiomycetes mushrooms. Prob Med Mycol. 2004;6:18-26.

  71. Wu L, Wu Z, Lin Q, Xie L. Purification and activities of an alkaline protein from mushroom Coprinus comatus. Acta Micro-biologica Sinica. 2003;43:793-8 (in Chinese).

  72. Beattie KD, Ulrich R, Grice D, Uddin SJ, Blake TB, Wood KA, Steel J, Iu F, May TW, Tiralongo E. Ethanolic and aqueous extracts derived from Australian fungi inhibit cancer cell growth in vitro. Mycologia. 2011;103(3):458-65.

  73. Rouhana-Toubi A, Wasser SP, Fares F. The shaggy ink cap medicinal mushroom, Coprinus comatus (higher Basidiomycetes) extract induces apoptosis in ovarian cancer cells via extrinsic and intrinsic apoptotic pathways. Int J Med Mushrooms. 2015;17(12):1127-36.

  74. Rouhana-Toubi A, Wasser SP, Agbaria A, Fares F. Inhibitory effect of ethyl acetate extract of the shaggy ink cap medicinal mushroom, Coprinus comatus (higher Basidiomycetes) fruit bodies on cell growth of human ovarian cancer. Int J Med Mushrooms. 2013;15(5):457-70.

  75. Pala SA, Wani AH. Antioxidant activity of some wild mushrooms of Kashmir Valley. Biores Bull. 2013;2(2):125-9.

  76. Zhou S, Liu Y, Yang Y, Tang Q, Zhang J. Hypoglycemic activity of polysaccharide from fruiting bodies of the shaggy ink cap medicinal mushroom, Coprinus comatus (higher Basidiomycetes), on mice induced by alloxan and its potential mechanism. Int J Med Mushrooms. 2015;17(10):957-64.

  77. Luo H, Mo MH, Huang XW, Li X, Zhang KQ. Coprinus comatus: a basidiomycete fungus forms novel spiny structures and infects nematodes. Mycologia. 2004;96:1218-24.

  78. Badalyan SM, Kues U. Formation of hyphal loops in xylotrophic coprinoid mushrooms. In: Pisabarro AG, Ramirez L, editors. Genetics and Cellular Biology of Basidiomycetes VI (GCBBVI); 2005 Jun 3-6; Pamplona, Spain. p. 285.

  79. Li Y, Xiang H. Nematicidal activity of Coprinus comatus. Acta Phytopathol Sinica. 2005;35:456-8.

  80. Badalyan SM, Shahbazyan TA. Proteolytic activity of several Coprinellus species. In: Abstracts 7th International Medicinal Mushroom Conference; 2013 Aug 26-29; Beijing, China. p. 205-6.

  81. Lilly WW, Stajich JE, Pukkila PJ, Wilke SK, Inoguchi N. An expanded family of fungalysin extracellular metallopeptidases of Coprinopsis cinerea. Mycol Res. 2008;112:389-98.

CITADO POR
  1. Badalyan Susanna M., Rapior Sylvie, The Neurotrophic and Neuroprotective Potential of Macrofungi, in Medicinal Herbs and Fungi, 2021. Crossref

  2. Dimitrova Tsonka, Distribution of edible, toxic and medicinal wild mushrooms in Europe and Bulgaria, Acta Scientifica Naturalis, 8, 3, 2021. Crossref

Portal Digitalde Biblioteca Digital eLibros Revistas Referencias y Libros de Ponencias Colecciones Precios y Políticas de Suscripcione Begell House Contáctenos Language English 中文 Русский Português German French Spain