Suscripción a Biblioteca: Guest
Portal Digitalde Biblioteca Digital eLibros Revistas Referencias y Libros de Ponencias Colecciones
International Journal of Fluid Mechanics Research
ESCI SJR: 0.206 SNIP: 0.446 CiteScore™: 0.5

ISSN Imprimir: 2152-5102
ISSN En Línea: 2152-5110

Volumen 47, 2020 Volumen 46, 2019 Volumen 45, 2018 Volumen 44, 2017 Volumen 43, 2016 Volumen 42, 2015 Volumen 41, 2014 Volumen 40, 2013 Volumen 39, 2012 Volumen 38, 2011 Volumen 37, 2010 Volumen 36, 2009 Volumen 35, 2008 Volumen 34, 2007 Volumen 33, 2006 Volumen 32, 2005 Volumen 31, 2004 Volumen 30, 2003 Volumen 29, 2002 Volumen 28, 2001 Volumen 27, 2000 Volumen 26, 1999 Volumen 25, 1998 Volumen 24, 1997 Volumen 23, 1996 Volumen 22, 1995

International Journal of Fluid Mechanics Research

DOI: 10.1615/InterJFluidMechRes.v36.i5.30
pages 424-446

Impulsively Started Flow of a Micropolar Fluid Past a Circular Cylinder

F. M. Mahfouz
Mechanical Engineering Department, UET, Taxila, Pakistan [on leave from Menoufia University, Egypt]


The characteristics of the unsteady laminar impulsive flow of micropolar fluid over a horizontal circular cylinder is investigated. The conservation equations for mass, linear momentum and angular momentum are solved in order to determine the flow structure and associated hydrodynamic forces and couple. The main controlling parameters are Reynolds number and material parameters of micropolar fluid. The dimensionless material parameters are the vortex viscosity, the spin gradient viscosity and the micro-inertia density. These parameters are selected in the range from 0 to 10 while the Reynolds number is considered up to 180. The results have shown that the micro-inertia density has no effect on micropolar fluid flow characteristics while the effect of both vortex viscosity and spin gradient viscosity is noticeable. The study has shown that both the Strouhal number and the amplitude of oscillating lift force decrease with the increase of vortex viscosity and with the increase, but with a little degree, of spin gradient viscosity. The results have revealed that the drag coefficient does not exhibit a clear general trend as the material parameters vary. The damping effect of micropolar fluid on vortex shedding process should draw the attention to artificially made micropolar fluids as a possible control method for flow separation.