Suscripción a Biblioteca: Guest
Portal Digitalde Biblioteca Digital eLibros Revistas Referencias y Libros de Ponencias Colecciones
International Journal of Fluid Mechanics Research
ESCI SJR: 0.206 SNIP: 0.446 CiteScore™: 0.5

ISSN Imprimir: 2152-5102
ISSN En Línea: 2152-5110

Volumes:
Volumen 47, 2020 Volumen 46, 2019 Volumen 45, 2018 Volumen 44, 2017 Volumen 43, 2016 Volumen 42, 2015 Volumen 41, 2014 Volumen 40, 2013 Volumen 39, 2012 Volumen 38, 2011 Volumen 37, 2010 Volumen 36, 2009 Volumen 35, 2008 Volumen 34, 2007 Volumen 33, 2006 Volumen 32, 2005 Volumen 31, 2004 Volumen 30, 2003 Volumen 29, 2002 Volumen 28, 2001 Volumen 27, 2000 Volumen 26, 1999 Volumen 25, 1998 Volumen 24, 1997 Volumen 23, 1996 Volumen 22, 1995

International Journal of Fluid Mechanics Research

DOI: 10.1615/InterJFluidMechRes.v24.i1-3.250
pages 251-260

Spray Break-Up Process of Diesel Fuel Investigated Close to the Nozzle

A. Fath
Lehrstuhl für Technische Thermodynamik (LTT) Friedrich-Alexander Universität Erlangen-Nurnberg Am Weichselgarten 8, D-91058 Erlangen, Germany
K.-U. Munch
Lehrstuhl für Technische Thermodynamik (LTT) Friedrich-Alexander Universität Erlangen-Nurnberg Am Weichselgarten 8, D-91058 Erlangen, Germany
Alfred Leipertz
Lehrstuhl fur Technische Thermodynamik (LTT), Universitat Erlangen-Nurnberg,Am Weichselgarten 8, D-91058 Erlangen, Germany; ESYTEC Energie- und Systemtechnik GmbH Erlangen, Am Weichselgarten 6, D-91058 Erlangen, Germany

SINOPSIS

The most common spray break-up models for fuel atomization are presented and discussed. Different break-up models show different spray characteristics and none of the presented models can explain the phenomena observed in several recent works. Up to now there is no confirmation for one of them. Here, a light sheet technique was used to investigate the spray structures close to the nozzle orifice by means of a new detection optics. The experimental results show a liquid jet which is dispersed with cavitation bubbles especially at the edge of the jet. The bubbles implode next to the orifice and create strong disturbances which are increased by aerodynamic interactions. Based on these observation a new idea of a break-up model has been developed. Additionally the two-phase flow was used to determine the flow velocity close to the nozzle.