Suscripción a Biblioteca: Guest
Portal Digitalde Biblioteca Digital eLibros Revistas Referencias y Libros de Ponencias Colecciones
International Journal of Fluid Mechanics Research
ESCI SJR: 0.206 SNIP: 0.446 CiteScore™: 0.5

ISSN Imprimir: 2152-5102
ISSN En Línea: 2152-5110

Volumes:
Volumen 46, 2019 Volumen 45, 2018 Volumen 44, 2017 Volumen 43, 2016 Volumen 42, 2015 Volumen 41, 2014 Volumen 40, 2013 Volumen 39, 2012 Volumen 38, 2011 Volumen 37, 2010 Volumen 36, 2009 Volumen 35, 2008 Volumen 34, 2007 Volumen 33, 2006 Volumen 32, 2005 Volumen 31, 2004 Volumen 30, 2003 Volumen 29, 2002 Volumen 28, 2001 Volumen 27, 2000 Volumen 26, 1999 Volumen 25, 1998 Volumen 24, 1997 Volumen 23, 1996 Volumen 22, 1995

International Journal of Fluid Mechanics Research

DOI: 10.1615/InterJFluidMechRes.2018018422
pages 199-209

FLOW AND HEAT TRANSFER DUE TO IMPINGING ANNULAR JET

Tarun Kanti Pal
Department of Mechanical Engineering, College of Engineering and Management, Kolaghat 721171, India
Himadri Chattopadhyay
Department of Mechanical Engineering, Jadavpur University, Kolkata − 700032, West Bengal, India
Dipak Kumar Mandal
Deptartment of Mechanical Engineering, College of Engineering & Management, Kolaghat, P.O: K.T.P.P. Township, Midnapore (E) - 721171, West Bengal, India

SINOPSIS

It is well known that significant numbers of investigations have studied impinging circular jets; relatively fewer studies have dealt with annular jets. In this work, numerical investigations predict the transport phenomena and Nusselt number distribution of laminar-turbulent annular jets on a surface due to impingement. For analysis purposes, the annular jet characteristics are compared with a circular jet at the nozzle exit with the same Reynolds number and the same amount of mass and momentum efflux. The Reynolds number is defined on the basis of the width of the annular part of the jet. It was found that heat transfer from the annular jet was 20%–30% less than for the circular jet. The peak heat transfer zone is observed downstream of the annular ring. This location moves downstream as the Reynolds number increases. The skin friction pattern shows a similar trend. The nature of distribution of the Nusselt number over the impinging surface scales with Re0.54 for the laminar region and with Re0.66 for the turbulent region.

REFERENCIAS

  1. Abraham, J.P., Sparrow, E.M., and Tong, J.C.K., Heat Transfer in All Pipe Flow Regimes: Laminar, Transitional/Intermittent, and Turbulent, Int. J Heat Mass Transf., vol. 52, pp. 557–563, 2009.

  2. Bhattacharyya, S., Chattopadhyay, H., and Benim, A.C., Simulation of Heat Transfer Enhancement in Duct Flow with Twisted Tape Insert, Prog. Comput. Fluid Dyn., vol. 17, no. 3, pp. 193–197, 2017.

  3. Chattopadhyay, H., Numerical Investigations of Heat Transfer from Annular Jet, Int. J. Heat Mass Transf., vol. 47, pp. 3197–3201, 2004.

  4. Chattopadhyay, H., Impinging Heat Transfer due to a Turbulent Annular Jet, Int. J. Trans. Phenom., vol. 9, pp. 287–296, 2007.

  5. Chattopadhyay, H. and Benim, A.C., Turbulent Heat Transfer over a Moving Surface due to Impinging Slot Jets, Int. J. Heat Transf., vol. 133, p. 104502, 2011.

  6. Craft, T.J., Graham, L.J.W., and Launder, B.E., Impinging Jet Studies for Turbulence Model Assessment—II. An Examination of the Performance of Four Turbulence Models, Int. J. Heat Mass Transf., vol. 36, pp. 2675–2684, 1993.

  7. Gilliland, T., Ranga-Dinesh, K.K.J., Fairweather, M., Falle, S.A.E.G., Jenkins K.W., and Savill, A.M., External Intermittency Simulation in Turbulent Round Jets Flow, Turbulence Combust., vol. 89, no. 3, pp. 385–406, 2012.

  8. Hosseinalipour, S.M. and Mujumdar, A.S., Comparative Evaluation of Different Turbulence Models for Confined Impinging and Opposing Jet Flows, Numer. Heat Transf., Part A, vol. 28, pp. 647–666, 1995.

  9. Ichimiya, K., Heat Transfer Characteristics of an Annular Turbulent Impinging Jet with a Confined Wall Measured by Thermo Sensitive Liquid Crystal, Heat Mass Transf., vol. 39, pp. 545–551, 2003.

  10. Jambunathan, K., Lai, E., Moss, M.A., and Button, B.L., A Review of Heat Transfer Data for Single Circular Jet Impingement, Int. J. Heat Fluid Flow, vol. 13, pp. 106–115, 1992.

  11. Kadiyala, P.K. and Chattopadhyay, H., Numerical Simulation of Transport Phenomena due to an Array of Round Jets Impinging on Hot Moving Surface, Drying Technol., vol. 35, pp. 1742–1754, 2017.

  12. Kadiyala, P.K. and Chattopadhyay, H., Numerical Analysis of Heat Transfer from a Moving Surface due to Impingement of Slot Jets, Heat Transf. Eng., vol. 39, pp. 98–106, 2018.

  13. Katti, V.V., Yasaswy, S.N., and Prabhu, S.V., Local Heat Transfer Distribution between Smooth Flat Surface and Impinging Air Jet from a Circular Nozzle at Low Reynolds Numbers, Heat Mass Transf., vol. 47, no. 3, pp. 237–244, 2011.

  14. Laschefski, H., Cziesla, T., and Mitra, N.K., Evolution of Flow Structure in Impinging Three-Dimensional Axial and Radial Jets, Int. J. Numer. Methods Fluids, vol. 25, pp. 1083–1103, 1997.

  15. Maki, H. and Yabe, A., Heat Transfer by the Annular Impinging Jet, Exp. Heat Transf., vol. 2, pp. 1–12, 1989.

  16. Martin, H., Impinging Jets, in Handbook of Heat Exchanger Design, G.F. Hewitt, Ed.,Washington, DC: Hemisphere, pp. 2.5.6.1– 2.5.6.10, 1990.

  17. Orlanski, I., A Simple Boundary Condition for Unbounded Flows, J. Comput. Phys., vol. 21, pp. 251–269, 1976.

  18. Patankar, S.V., Numerical Heat Transfer and Fluid Flow,Washington, DC: Hemisphere, 1980.

  19. Polat, S., Heat and Mass Transfer in Impinging Drying, Drying Technol., vol. 11, pp. 1147–1176, 1993.

  20. Shuja, S.Z., Yilbas, B.S., and Budair,M.O., Gas Jet Impingement on a Surface Having a Limited Constant Feat Flux Area: Various Turbulence Models, Numer. Heat Transf., Part A, vol. 36, pp. 171–200, 1999.

  21. Shuja, S.Z., Yilbas, B.S., and Khan, S., Jet Impingement onto a Conical Cavity: Effects of Annular Nozzle Outer Angle and Jet Velocity on Heat Transfer and Skin Friction, Int. J. Thermal Sci., vol. 48, pp. 985–997, 2009.

  22. Travnıcek, Z. and Tesar, V., Annular Synthetic Jet used for Impinging Flow Mass Transfer, Int. J. Heat Mass Transf., vol. 46, pp. 3291–3297, 2003.

  23. Travnıcek, Z. and Tesar, V., Annular Impinging Jet with Recirculation Zone Expanded by Acoustic Excitation, Int. J. Heat Mass Transf., vol. 47, pp. 2329–2341, 2004.

  24. Zhang, Z., Chong, D.T., and Yan, J., Modeling and Experimental Investigation on Water-Driven Steam Injector for Waste Heat Recovery, Appl. Thermal Eng., vol. 40, pp. 189–197, 2012.


Articles with similar content:

EFFECTS OF TURBULENCE INTENSITY AND INTEGRAL LENGTH SCALE OF A TURBULENT FREE STREAM ON FORCED CONVECTION HEAT TRANSFER FROM A CIRCULAR CYLINDER IN CROSS FLOW
International Heat Transfer Conference 6, Vol.5, 1978, issue
S. P. Sukhatme, N.R. Yardi
NUMERICAL INVESTIGATION OF CONJUGATE HEAT TRANSFER FROM LAMINAR WALL JET FLOW OVER A SHALLOW CAVITY
Heat Transfer Research, Vol.49, 2018, issue 12
Maheandera Prabu Paulraj, Dawid Taler, Jan Taler, Pawel Oclon, Andrea Vallati, Rajesh Kanna Parthasarathy
HEAT TRANSFER FROM DISCRETE HEAT SOURCES USING AN AXISYMMETRIC, SUBMERGED AND CONFINED LIQUID JET
International Heat Transfer Conference 10, Vol.6, 1994, issue
Roy A. Rice, Suresh V. Garimella
TURBULENT HEAT TRANSFER CHARACTERISTICS IN A STAGNATION REGION OF AXI-SYMMETRIC JET IMPINGEMENT
International Heat Transfer Conference 11, Vol.14, 1998, issue
Jung Ho Lee, Sang Joon Lee
Large Eddy Simulation of Wake-Near Wall Flow: Heat Transfer Modification
ICHMT DIGITAL LIBRARY ONLINE, Vol.10, 2006, issue
J.-L. Harion, S. Tabloul, D. Bougeard, B. Baudoin