RT Journal Article ID 559051a975e4c0e4 A1 Levy, Yeshayahou A1 Arfi, P. T1 TURBULENCE-CHEMISTRY INTERACTION CALCULATIONS FOR IMPROVED NOx PREDICTIONS JF International Journal of Energy for a Clean Environment JO IJECE YR 2005 FD 2005-10-18 VO 6 IS 3 SP 195 OP 224 AB NOx predictions in combustion systems are highly dependent on the accuracy of the temperature field inside the combustor and on the accuracy of its chemistry modeling. Turbulence-chemistry interaction affects local temperature, local extinction, and hence flame stability. In the present study, local extinction phenomena as well as the NOx formation processes were studied based on a perfectly stirred reactor model, modeled by the eddy dissipation concept. The chemical quenching time is calculated using a detailed mechanism for different inlet conditions (temperature, equivalence ratio, and dilution with combustion products). Results of this parametric study show close agreement with the literature. It was observed that at high inlet temperatures, the effect of the fuel air ratio on chemical quenching time is reduced with temperature and becomes nearly insignificant for temperatures higher than about 1200 K. In addition, it appears that the deterioration of flame stability due to air vitiation by combustion products can be counterbalanced by an increase in the air inlet temperature. This is of special interest since the combined effect of an ultralean mixture at increased inlet air temperature together with air vitiation allows stabilizing the combustion process at lower temperatures, and thereby allows for a safe and significant dry NOx reduction method. PB Begell House LK https://www.dl.begellhouse.com/journals/6d18a859536a7b02,0a74cb660a6afac8,559051a975e4c0e4.html