Suscripción a Biblioteca: Guest
Página principal de la Biblioteca Digital de ICHMT Año actual Archivos Comité Ejecutivo Centro Internacional de Transferencia de Calor y Masa

NUMERICAL STUDY OF NANOFLUID HEAT TRANSFER ENHANCEMENT WITH MIXING THERMAL CONDUCTIVITY MODELS

Amarin Tongkratoke
Faculty of Science and Engineering, Kasetsart University, Chalermphrakiat Sakon Nakhon Province Campus, Sakon Nakhon 47000 Thailand

Anchasa Pramuanjaroenkij
Faculty of Science and Engineering, Kasetsart University, Chalermphrakiat Sakon Nakhon Province Campus, Sakon Nakhon 47000 Thailand

Apichart Chaengbamrung
Department of Mechanical Engineering, Kasetsart University, Bangkok, 10900, Thailand

Sadik Kakac
Department of Mechanical Engineering,TOBB University of Economics and Technology, Ankara-Turkey; and LIPING CAO, Westinghouse Electric Company, LLC, PA; and Department of Mechanical Engineering, University of Miami, Florida - USA

Sinopsis

Nanofluids has shown its possibility in enhancing heat transfer performance above its base fluids. This work presents a numerical study to analyze the nanofluid heat transfer enhancement using different theoretical models; the effective viscosity and the effective thermal conductivity models. The Maxwell, Brownian motion, and Yu and Choi models are considered as thermal conductivity models and the models are used in the simulation domain alternately, named the mixing models. The Al2O3-water nanofluids is chosen in this study and assumed to flow under laminar fully developed flow condition through a rectangular pipe as in a circuit application. The governing equations written in terms of the primitive variables are solved through an in-house program using the finite volume method and the SIMPLE algorithm. The results showed that different effective viscosity and thermal conductivity models play important roles, especially at wall surfaces where the convective heat transfer is enhanced effectively. Moreover, the small volume fractions, the nanofluid volume fractions from 0.01 to 0.03 can increase the heat transfer enhancement. Therefore, the volume fraction, the effective viscosity and the effective thermal conductivity at the wall region can be increased by increasing nanoparticle amount. This work can strongly support the literatures that the volume fraction, the effective viscosity and the effective thermal conductivity can enhance the heat transfer performance in the nanofluid flows not only with the single-phase model considered but also with the mixing models examined.

ICHMT Digital Library

Bow shocks on a jet-like solid body shape. Thermal Sciences 2004, 2004. Pulsed, supersonic fuel jets - their characteristics and potential for improved diesel engine injection. PULSED, SUPERSONIC FUEL JETS - THEIR CHARACTERISTICS AND POTENTIAL FOR IMPROVED DIESEL ENGINE INJECTION
View of engine compartment components (left). Plots of temperature distributions in centreplane, forward of engine (right). CHT-04 - Advances in Computational Heat Transfer III, 2004. Devel... DEVELOPMENT AND CURRENT STATUS OF INDUSTRIAL THERMOFLUIDS CFD ANALYSIS
Pratt & Whitney's F-135 Joint Strike Fighter Engine under test in Florida is a 3600F class jet engine. TURBINE-09, 2009. Turbine airfoil leading edge stagnation aerodynamics and heat transfe... TURBINE AIRFOIL LEADING EDGE STAGNATION AERODYNAMICS AND HEAT TRANSFER - A REVIEW
Refractive index reconstructed field. (a) Second iteration. (b) Fourth iteration. Radiative Transfer - VI, 2010. Theoretical development for refractive index reconstruction from a radiative ... THEORETICAL DEVELOPMENT FOR REFRACTIVE INDEX RECONSTRUCTION FROM A RADIATIVE TRANSFER EQUATION-BASED ALGORITHM
Two inclusion test, four collimated sources. Radiative Transfer - VI, 2010. New developments in frequency domain optical tomography. Part II. Application with a L-BFGS associated to an inexa... NEW DEVELOPMENTS IN FREQUENCY DOMAIN OPTICAL TOMOGRAPHY. PART II. APPLICATION WITH A L-BFGS ASSOCIATED TO AN INEXACT LINE SEARCH