Suscripción a Biblioteca: Guest
Turbulence Heat and Mass Transfer 6. Proceedings of the Sixth International Symposium On Turbulence Heat and Mass Transfer
September, 14-18, 2009, Rome, Italy

DOI: 10.1615/ICHMT.2009.TurbulHeatMassTransf


ISBN Print: 978-1-56700-262-1

ISSN: 2377-2816

Large Eddy Simulation of combustor swirl flows

page 12
DOI: 10.1615/ICHMT.2009.TurbulHeatMassTransf.1020
Get accessGet access

SINOPSIS

Implicit Large Eddy Simulation (ILES) technique together with high resolution and high order accurate computational modelling was applied to turbulent swirling fuel injector flows. In the ILES calculation, the governing equations for a three dimensional, non-reactive, multi-species compressible flow were solved using a finite volume Godunov method. A fifth-order accurate reconstruction methods was used to achieve high order spatial accuracy and a second order explicit Runge-Kutta method was applied for time integration. Results of the temporally averaged mean velocity field showed that the ILES simulation captured complex flow structures without explicit subgrid scale modelling. Mean velocity and root mean square velocity fluctuation profiles showed good agreement with experimental data. The one dimensional turbulent kinetic energy spectrum indicated that the computation accounted for the energy transportation between large and small eddies sufficiently up to the maximum wave number present on the grid.

Portal Digitalde Biblioteca Digital eLibros Revistas Referencias y Libros de Ponencias Colecciones Precios y Políticas de Suscripcione Begell House Contáctenos Language English 中文 Русский Português German French Spain