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In this paper we present the results from a series of focus groups on the visualization of uncertainty in equation-of-state
(EOS) models. The initial goal was to identify the most effective ways to present EOS uncertainty to analysts, code
developers, and material modelers. Four prototype visualizations were developed to present EOS surfaces in a three-
dimensional, thermodynamic space. Focus group participants, primarily from Sandia National Laboratories, evaluated
particular features of the various techniques for different use cases and discussed their individual workflow processes,
experiences with other visualization tools, and the impact of uncertainty on their work. Related to our prototypes, we
found the 3D presentations to be helpful for seeing a large amount of information at once and for a big-picture view;
however, participants also desired relatively simple, two-dimensional graphics for better quantitative understanding
and because these plots are part of the existing visual language for material models. In addition to feedback on the
prototypes, several themes and issues emerged that are as compelling as the original goal and will eventually serve
as a starting point for further development of visualization and analysis tools. In particular, a distributed workflow
centered around material models was identified. Material model stakeholders contribute and extract information at
different points in this workflow depending on their role, but encounter various institutional and technical barriers
which restrict the flow of information. An effective software tool for this community must be cognizant of this workflow
and alleviate the bottlenecks and barriers within it. Uncertainty in EOS models is defined and interpreted differently
at the various stages of the workflow. In this context, uncertainty propagation is difficult to reduce to the mathematical
problem of estimating the uncertainty of an output from uncertain inputs.
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1. INTRODUCTION

The research objective of the Material Model Uncertainty Visualization (MMUV) project is to develop effective
techniques for displaying the uncertainty of material model data, with the eventual goal of providing a software tool
to users in the materials modeling community at Sandia National Laboratories. An example of a recently developed
capability for three-dimensional equation-of-state surface visualization is shown in Fig. 1. This image was generated
by Prism, a plugin that is distributed with ParaView [1]. The key convenience that Prism provides to users is that
data from simulations can be simultaneously displayed in both the physical geometry space (not shown here) and the
thermodynamic (EOS) space.

The initial thrust of the research in this paper was to address how one should add uncertainty information to the
display of an EOS surface, such as in Fig. 1. Narrowly defined, this question would not be too difficult to answer.

∗Correspond to V. Gregory Weirs, E-mail: vgweirs@sandia.gov

2152–5080/13/$35.00 c© 2013 by Begell House, Inc. 255



256 Weirs et al.

FIG. 1: Pressure is shown as a function of density and temperature for a fictitious material. All three dimensions
are logarithmic. Logarithmically distributed isotherms are shown as pink contours. Black lines identify discontinuous
phase boundaries. Regions of different phases are labeled, including mixed regions (“G+L” for mixed gas and liquid,
“G+S” for mixed gas and solid.)

As we describe in this article, however, the focus group approach revealed that to address this particular commu-
nity’s needs, just presenting the uncertainty information would not be sufficient. The key challenges derive from the
technical complexity of material modeling, and the related organizational complexity and diversity of roles across the
material model stakeholder community. In this context, uncertainty quantification is not (just) a mathematical problem
in which probability distributions of uncertain inputs are propagated through a model to compute output probability
distributions. Instead, it is the communication and integration of various technical uncertainties about material be-
havior from material science theoreticians and experimentalists, through software developers and analysts, to decision
makers. In this sequence, the material uncertainties are convolved with uncertainties from many other sources; the ma-
terial model development, software development, numerical simulations, and decision may span decades; and rarely
have all the people involved communicated with each other directly.

In the next subsection, the nature of material models is described, with specific emphasis on EOS models, their
associated uncertainties, broadly classified by their sources, and their role in engineering simulations. The following
subsections describe the focus group methodology and our process in particular.

1.1 Material Modeling

A material model describes the behavior of a specific material or class of materials. A material model is often com-
prised of a number of submodels. The different submodels may describe different physical or chemical phenomena,
for example, equation-of-state models describe equilibrium thermodynamics, while solid mechanics models describe
the relationship between stress and deformation. A solid mechanics model may be used in concert with other sub-
models, e.g., for the yield strength, fracture, or damage. Submodels may cover different regimes; an EOS model
for nitrogen at lower temperatures might not include chemical reactions or ionization, but a high-temperature model
might not include liquid or solid phases. Material models range from the relatively simple to the highly complex, and
the development of each submodel requires specialized expertise. Each model is based on theories and assumptions,
but experimental data are usually required to determine or calibrate model parameters for a specific material, or for a
particular regime.

In this work our interest is in EOS and solid mechanics material models. EOS models describe relationships
between thermodynamic variables such as pressure, density, temperature, internal energy, and the speed of sound in
a material. Solid mechanics models describe the relationship between the stress state and the strain (or deformation)
of a material in the solid state. In this article we focus on EOS models because we have existing techniques for
visualizing EOS surfaces, e.g., Fig. 1. Solid mechanics models are more complicated because stress and strain are
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3 × 3 tensor quantities, and because solid mechanical behavior is often dependent on the deformation history of the
material. Visualizing solid mechanics models, or at least the quantities of greatest interest to analysts, will be the
subject of future work.

Material model domain complexity makes the development of useful and usable uncertainty visualizations quite
challenging. Uncertainty is an abstract concept, even when the domain of interest and its associated uncertainties
are relatively simple or well studied. Material science is complicated and significant knowledge gaps and aleatory
uncertainties exist for most materials; yet all technology development requires at least minimal characterization of
material behavior and properties.

1.1.1 Equation-of-State Models and Sources of Uncertainty

An equation of state describes relationships between thermodynamic variables for a given material. Given any two
variables, all other variables can be computed through the EOS under the assumption of thermodynamic equilibrium.
The theory of thermodynamics provides some of these relationships [2, 3], such as the Maxwell relations. EOS models
can cover a very wide range of conditions, and different physical phenomena dominate material behavior in different
regimes [4]. The relevant physics for a particular regime provide additional equations and relationships. At this level of
description, uncertainties arising from the assumptions or approximations in the theory, as reflected in the equations,
are calledmodel form uncertainties.

The various thermodynamics theories often result in models that have parameters that must be provided to fully
specify the EOS. Some parameters may be independent of the specific material, but in many cases, the particular
parameter values distinguish the model for one material from models for other materials. When a theory does not pro-
vide the parameter values, they must be determined by experimental measurements or by more sophisticated physics
theories or models. These experiments and more sophisticated models have their own sources of error, which appear
in the material model as uncertainty in the specific values of the model parameters, orparameter uncertainty.

Sometimes the boundaries between regimes are sharp, such as the phase transition between ice and water, but
in other cases there is a gradual transition, for example, between an un-ionized and a fully ionized gas. Again, see
Fig. 1 for an illustration. For a multiphase material model, EOS models for different regimes are blended or combined
to describe the behavior across a number of regimes. Materials science provides some theory to determine where
discontinuous phase transitions occur; however, for various reasons EOS models may not locate these transitions
accurately. Depending on the particular material model, the uncertainty in the location of phase transitions may be
classified as model form or parameter uncertainty, but in either case it can have a large effect on the accuracy of the
material model.

For the work considered here, material models are input data for engineering simulation codes; the material model
is not a result of the engineering simulation. In these codes, EOS models are often stored in tabular form; e.g., pressure
values are stored for a number of discrete density-temperature points. For an arbitrary density and temperature, the
pressure is interpolated from nearby points in the table. Over the range of densities and temperatures, the pressure
can be shown as a surface. Most tabular EOS models contain several thermodynamic variables; the most common
are density, temperature, internal energy, and pressure. This format for representing the EOS introduces interpolation
error, which may be reduced by sampling the underlying material model at more closely spaced points, but cannot
be eliminated in practice. A second potential problem is that while the consistency between the different variables
can be maintained at the points in the table, consistency is difficult to enforce for interpolated values [3, 5]. Finally,
the most common tabular format, “SESAME” [6], uses a rectangular grid of density and temperature values; this
was originally driven by limited choices for data structures—tables often provide data outside of the regimes for
which a model has been developed and tested simply because of the constraints of the SESAME format. While the
uncertainties associated with the tabular format would seem to be easy to address, they remain a source of significant
concern for practitioners.

The results of engineering simulations depend on the EOS models used, but the sensitivity of particular responses
of interest (extracted from the simulation results) to these models varies widely. One reason is that the response can
be chosen from an essentially infinite number of possibilities; the analyst may be interested in a response that depends
very strongly on a material model, or one that is practically insensitive to the material model. If the response is
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insensitive to a material model, then the uncertainties in that material model will be irrelevant. Assuming the response
does depend on the material model, a second factor is the thermodynamic conditions the material experiences during
the simulation; a material model may have regions of large uncertainty, but the material in the simulation might not
enter those regions.

The uncertainty originating from the material models is convolved with uncertainties from other sources during
the simulation. For example, other simulation inputs will include the geometry of the device or control volume,
detailed specification of the boundary conditions and the initial conditions, and various numerical algorithm control
parameters, and all of these have their own model form and parameter uncertainties. During the simulation, these
uncertainties interact, and the uncertainty in the response of interest is a function of the individual uncertainties and
their generally nonlinear interactions.

1.1.2 The Mie-Grüneisen Equation-of-State Model

In this work we have used a Mie-Grüneisen (MG) model for aluminum to provide test data for prototype visual-
izations. The MG EOS is nominally a single-phase model in that it does not explicitly define phase transitions, but
it is sometimes used to describe both the solid and liquid phases of a material. It has a number of parameters that
engineering codes allow the user to specify. The model is defined by

P (ρ, E) = PR(ρ) + Γ0ρ0[E − ER(ρ)] (1)

E(ρ, T ) = ER(ρ) + CV [T − TR(ρ)] (2)

whereρ is the density,P is the pressure,E is the internal energy per unit mass,T is the temperature,Γ0 is the
Grüneisen parameter,ρ0 is the reference density, andCV is the specific heat capacity at constant volume. The last
three are material-specific constants. The MG model relates the pressure and energy to a reference curve. Here the
Hugoniot, a special curve comprised of the locus of shock states for a given initial state, is used and denoted by the
subscriptR. For many metals in the solid phase a linear Hugoniot relation expressed in the shock velocity,Us, and
the particle velocity,up, provides an excellent fit to experimental data:

Us = Cs + S1up (3)

whereCs is the speed of sound at reference conditions andS1 is the slope of the linear relationship, both material-
specific constants. The Rankine-Hugoniot equations relate the states on each side of a shock wave, and can be used to
derive [7]

PR(ρ) = P0 + ρ0Usup (4)

ER(ρ) = E0 + [PR(ρ) + P0]µ/2ρ0 (5)

TR(ρ) = eΓ0µ

(
T0 + C−1

V

∫ µ

0

e−Γ0µµ2Us
dUs

dµ
dµ

)
, (6)

whereµ = 1− ρ0/ρ andP0, E0, andT0 define the initial state.
As we have noted, uncertainties are abundant throughout the materials models workflow. For clarification, some of

the different types of uncertainties are now identified in the MG EOS model. As an example of model form uncertainty,
many materials are not are well described by the linearUs − up relationship, and no calibration of the parameters of
the MG model will be able to compensate for the error or uncertainty introduced by the linear relationship over a
significant range of densities. Parameter uncertainties are associated with the material-specific model parametersΓ0,
Cv, ρ0, Cs, andS1, and initial state parametersP0, E0, andT0. For this model, the range of validity is not provided.

1.2 Research Method

A focus group is a structured group interview, facilitated by a moderator, in which participants explore an issue or set
of issues of research importance. Because so many disciplines use focus groups, approaches to designing, deploying,
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and analyzing focus groups vary tremendously. However, all focus groups begin with the same basic principle: that
exchanges among participants facilitate the expression of ideas, knowledge, behaviors, and opinions that may be
invisible to individualized methods (such as a questionnaire or a one-on-one interview). Groups enable researchers to
access a broader range of skills and experiences than a single respondent; listening to others express ideas and opinions
can spur participants to remember and share information that might not have emerged in a one-on-one setting. Not
surprisingly, focus groups are an excellent way of eliciting the kinds of information that people naturally express in
group settings; or for documenting how knowledge emerges in the context of group interactions.

Focus groups play an important role in computer science research and software engineering in ways that are ger-
mane to the goals of the MMUV project. Studies of software engineering processes have used focus groups to gather
data about workflow patterns in engineering teams [8]. User- and interaction-oriented design paradigms suggest the
use of focus groups to gather qualitative data on user expectations and system requirements, and to evaluate prototype
interfaces [9–11]. For technology developers, focus groups also afford the opportunity to demonstrate sincere interest
in user concerns. In that sense, focus groups can enhance relationships between the user community and the tech-
nology developers by establishing a foundation for ongoing communication and exchange of information. Over time,
the user community perceives itself as a dedicated stakeholder in the work of the technology developers, instead of
recipients of a product tossed over the proverbial fence.

The focus group approach does have significant drawbacks: While participants often generate excellent contex-
tual insights, focus group data are less useful for analyzing long-term trends or generalizing about large populations.
Moreover, focus groups are prone to groupthink bias and social dominance bias (i.e., when one of the group mem-
bers exerts undue influence on the interactions or content of the group, either consciously or unconsciously [12].) A
structured script, pilot runs, careful moderation, and a sound qualitative sampling strategy can enhance the quality
and dependability of focus group findings. Even so, software developers should treat focus groups as a starting point
for technology design and evaluation, if only because because focus groups only capture information on what users
“say they do—not how they actually do it” [13]. Other approaches, including observation, user participation in design
teams, multiple prototyping and iterative re designs, are necessary to develop technologies that people perceive as
truly adoptable.

1.3 Focus Group Process

As noted above, one of the major goals of the MMUV project was the design and development of visualizations
that would be usable and useful to experts who generate, interact with, or rely on material models in their work—
what we have described above as the “stakeholder community.” The domain complexity of material modeling and the
organizational complexity of the stakeholder community are precisely what make material modeling an interesting
computational science, information visualization, and technology design problem, but they also make it difficult to
understand what “usability” and “utility” mean in the many contexts of work where material model visualization
might be useful. Accordingly, we decided to use focus groups as a way of gathering expert knowledge about material
modeling challenges at Sandia National Laboratories, and as a way of opening a dialogue with the user community
so that we could better understand the current state of practice. For specific feedback on representing uncertainty in
EOS models, four visualization prototypes were developed by the MMUV project. In May, June, and July of 2011, we
conducted four focus groups with participants representing the various material modeling stakeholder communities
described above. Participants were technical staff at, or in some way affiliated with, Sandia.

The diversity of the material modeling stakeholder community made composition of the focus groups a bit chal-
lenging, since members of the stakeholder subcommunities tend not to interact with each other on a regular basis
(more on this issue below). The success of a focus group depends on the composition of the participant pool; people
need to have enough common ground that they can communicate productively about the topic of discussion, but diver-
sity of perspective can spark insights that might not emerge in a homogeneous group. All four focus groups included
representatives of each of the three primary subcommunities—material modelers, code developers, and analysts. To
recruit participants, we drew on contacts from our own Sandia networks. We scheduled the focus groups and invited
participants but offered no additional incentives (neither snacks nor money), and all participation was completely
voluntary.
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In moderating the groups, we decided to use a team facilitation approach, in which a technical leader and a process
leader managed the group logistics and flow of conversation. To ensure a smooth process, we developed a script with
timing notations to ensure adequate and balanced coverage of the topics of interest. In this script, we split the focus
groups into four phases of discussion: an introduction, a general discussion about material modeling and uncertainty;
presentation and discussion of the prototypes; and a wrap-up discussion. Rather than ask participants to dive right into
assessing the MMUV prototypes, we decided to prime the discussion by asking the participants to talk about the role
of material modeling in their work. In doing so, participants exchanged observations about the importance of material
models for engineering analyses; identified key sources of material model uncertainties; discussed the impact of ma-
terial uncertainty on their work; and described strategies for representing and managing uncertainty. These exchanges
set the stage for the second half of the focus group, during which the visualization prototype developers took turns
presenting and discussing their prototype designs with the group participants. As expected, putting prototype designs
in front of the experts generated intense discussion about the problem of understanding and managing uncertainty in
material models.

In the following sections, we describe the focus groups and summarize key themes. The prototypes are described
in Section 3. The participants provided detailed comments on these prototypes and concrete suggestions for enhancing
visualization utility and interactivity, as discussed in Section 4. However, the participants’ discussions also illuminated
the complicated organizational and technical relationships through which information about material properties and
performance is exchanged and incorporated into Sandia’s engineering research and development. Although there was
an awareness that the stakeholder community was only loosely connected, a much clearer picture emerged during our
focus groups, and since it provides the context for all of the participants’s comments, we begin with an overview of
these relationships in the next section.

2. THE DISTRIBUTED WORKFLOW OF MATERIAL MODELING

The focus group sessions revealed a great deal about the state of practice in material modeling and the use of mate-
rial models in Sandia’s research and engineering domains. Material model development and use exist in a distributed
information workflow: A particular material model is developed by material modelers, incorporated into a continuum
engineering simulation code by code developers, and used by analysts when they run simulations for specific appli-
cations. Ultimately, a decision maker chooses actions that are informed by those simulations. Each of these different
groups is a stakeholder in the material model, but their knowledge about the material behavior and their use of the
material model vary widely. Naturally, the meaning of material model “uncertainty” also varies widely across these
stakeholder roles.

2.1 Material Modelers

As described in Section 1, material model development begins with theories that may be incomplete, contain ac-
knowledged gaps in applicability, or have other known deficiencies. A typical model has a number of parameters that
must be determined for each particular material; these parameters are calibrated to match available experimental data,
or lacking that, to data from simulations of more fundamental models such as density functional theory (DFT) or
molecular dynamics (MD) simulations. These parameters might be exposed to end users of the model, or might be
internal to the model and relevant only to the material model developer. Finally, while a material model may have a
functional interface that accepts input values and returns output values, in many cases the model is incorporated into
the engineering code in precomputed, tabular form and output values are interpolated. For a material modeler, each of
these steps is a source of a different kind of error that contributes to the overall uncertainty of the model.

For a given material model, material modelers struggle to integrate the uncertainties from these different sources
into a single uncertainty field for a given thermodynamic variable. Some material modelers in our focus groups
were hesitant to even attempt to put a number on the sum uncertainty for any model, because they saw no con-
structive value in, essentially, guessing. This emphasizes the technical complexity of material modeling, and indi-
cates that rigorous quantification of material model uncertainty is at an early stage. With that said, serious efforts
are underway for quantifying model form uncertainty, parameter uncertainty, uncertainty in experimental data, and
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errors in discretization, and providing this information in a form that is accessible to the engineering simulation
codes.

Material modelers implement their models in software libraries. A typical library life cycle begins with a minimal
set of models for a particular engineering code, but over time more models are added. At some point the library is
refactored so that it can be used in another code, which may have different algorithms or be intended for a different
class of engineering applications. Material model libraries are reused in different engineering codes because they are
expensive to develop and test. Most libraries have many contributors over a number of years or decades, sometimes
from several labs and companies. The level of documentation on how a model was developed can vary significantly
across models. Historically, uncertainty information has not been included in material model libraries beyond a few
very general text comments.

2.2 Code Developers

The code developers in our focus groups are programmers, but their educational degrees were Ph.D.s in various
engineering disciplines, physics, or applied math. Development and maintenance of engineering simulation codes
require a solid foundation in numerical discretization techniques as well as domain-specific expertise. Regarding
material modeling, the essential concern of code developers is the interaction between the material models and the
discretization algorithms. The discretization algorithms assume the EOS model possesses certain properties, such as
convexity, or a positive speed of sound. Likewise, the EOS model often assumes it will only be given valid input
data, e.g., density and temperature points for which the EOS has been validated, or at least in a regime the EOS was
intended to cover. In practice both sets of assumptions are sometimes violated, and occasionally the code crashes and
does not produce a solution. In engineering codes, developers address these cases with a number of techniques that
vary widely in their theoretical credibility.

Ideally, code developers could treat a material model library as a black box and focus on the interface between
the models and discretization techniques. Unfortunately, this separation of concerns is rarely possible for a number
of reasons. The primary reason is that it is difficult to completely separate the material model implementation from
the host code (the code that calls the model from the library.) Complicated material behavior, described by a number
of different submodels, often requires specialized treatment by the algorithms in the engineering code. A particularly
difficult example is the treatment of mixed-material elements, or computational cells that contain more than one
material. To properly treat such an element, the engineering code will need to know what materials are included,
and the phases of each material; different algorithms apply for each combination of phases. The relative positions
of the materials are also important when at least one material is in the solid phase, requiring complicated interface
reconstruction algorithms.

Because some models in a library might have been intended for a different engineering code, or with a different
application in mind, code developers spend a significant amount of time updating material models to be consistent with
other models and the host code. Consequently, the maintenance of material model libraries is often shared between
code developers and material modelers. Code developers work with material modelers, but rarely do they know the
authors of all the material models included in the libraries that their engineering code uses.

2.3 Analysts

Analysts are quite interested in how the uncertainty of the material model affects their simulation results, and less
concerned about the material model uncertainty itself. It is analysts that view material model uncertainty as just one
type of contribution among many to the overall uncertainty in their simulations. As a group, the analysts that par-
ticipated in our focus groups had the most widely varying backgrounds. Some had been code developers or worked
on specific aspects of material modeling, while others had only an introductory understanding of material modeling.
Analysts have minimal access to information about material model uncertainties; if material modelers have this in-
formation, it is rarely in an easily accessible, published document, and analysts have minimal contact with material
modelers. Analysts are more likely to contact code developers with their questions and concerns. A disturbing theme,
heard repeatedly, was that analysts have little guidance on choosing among the EOS models available for the same
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material—they do not have a way to obtain and compare the uncertainties from two EOS models for the conditions
that matter in their application.

2.4 Uncertainty Propagation through the Workflow

Uncertainty quantification is most often presented as a mathematical problem, in which a number of uncertain inputs
are mapped by some process to an uncertain output. If probability distributions of the inputs are known and the output
can be computed for specific values of the inputs, the probability distribution of the output can be determined. In
this mathematical problem, the process that produces an output value from a set of input values is arbitrary: The
outputs can be determined by controlled physical experiments, or observations for measured inputs in uncontrolled
experiments (e.g., weather), or produced by a model or numerical simulation. The main impact of the process on the
mathematical problem is that in most cases, it limits the amount of output values available; a model evaluation or
controlled experiment may be expensive or time consuming to perform, or may provide output values for only a small
sampling or narrow range of input values. As a result of limited output data, estimates of output probabilities are less
accurate (outputs have greater uncertainty.)

In this context, the uncertainty of simulation outputs on some material model uncertainties can be examined. The
uncertainty of an input (e.g., a material model parameter) is described by a probability distribution, and a variety of
techniques are available to propagate a number of input uncertainties to the uncertainty of a simulation output. Nonin-
trusive methods rely on running a number of simulations for different input values and examining the distribution of
the output quantity. Software for propagating uncertain inputs through an engineering simulation code to determine
output uncertainties is available, such as DAKOTA [14]. Intrusive techniques are also available but are very difficult to
retrofit to existing engineering codes. Considering uncertain material models, this approach is effective for examining
parameter uncertainties and to a lesser degree, the uncertainties that can be represented by discrete inputs.

While this mathematical formulation of the uncertainty quantification is necessary and useful, it does not capture
all of the complexity of the the material modeling distributed workflow. It is daunting to consider how many parameters
would be required to describe the many different material model uncertainties individually, the level of effort required
to accurately characterize the probability distribution of each, and the number of simulations required to adequately
sample the input hypercube. And yet, the effects of model form uncertainty and interpolation error for tabular EOSs
on simulation results are not accessible in this approach. As noted earlier, material modelers struggle to determine
the total uncertainty in a material model, and are only beginning to think about how to express that uncertainty in a
material model library; however, this is the most pragmatic next step. Ultimately, code developers would incorporate
this uncertainty into discretization and solution algorithms to provide output uncertainties directly to analysts, but this
research area is in a very early stage.

In the near future, the propagation of material model uncertainties through the distributed workflow is more likely
to be through people, more qualitative than quantitative, and more interactive than automated. Software tools for
visualizing material model uncertainty will aid communication between the various stakeholders, as well as help each
group with their specific tasks. This state of affairs is simply a consequence of the technical complexity and diversity
of material science.

3. PROTOTYPES

To facilitate discussion within our focus groups, we developed four visualization prototypes, each of which present
uncertainty within a material model in a unique way. Participants evaluated specific features of each prototype and
described scenarios in which different elements could prove helpful. We present each of the prototypes used in the
focus groups, using the Mie-Grüneisen EOS model. Because phase transitions are not explicitly recognized in this
model, the surfaces in the prototypes will not exhibit the structure observed in the pressure surface in Fig. 1.

As noted earlier, few, if any, material model libraries contain EOS uncertainty data, and in fact, it is not clear how
best to express such information so that engineering codes could use it. To obtain data for our prototype visualizations,
we have treated two parameters of the MG EOS as uncertain. From several sets of values for these uncertain parame-
ters, different realizations of the model were generated. Each model realization was evaluated at a number of density
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and temperature values to produce a pressure surface, i.e., a pressure surface is the pressure as a function of density
and temperature, and a different surface was obtained for each pair of uncertain parameter values. The two uncertain
parameters areCs andS1 in the linear Hugoniot [Eq. (3)]; they were simultaneously varied within about 1% of the
nominal values for aluminum. The differences in the surfaces produced are quite small, but are smooth functions of
density and temperature. From these surfaces, several of the prototypes calculated the mean and standard deviation,
also as functions of density and temperature.

One could argue the merits of this approach to generating a test data set, but the key feature is that the uncertainty
is a field variable, not a constant value. Whether the standard deviation is the best measure to represent uncertainty,
or if the mean pressure surface is a better reference than the nominal surface, are important questions for stakeholders
using the visualizations; for analysts interpreting the visualizations it is critical to understanding what they are seeing.
However, these issues do not affect the comparisons of the visualization prototypes.

For many metals, the linear Hugoniot relationship describes experimental data very well, so the uncertainties in
the parameters are small. In most of the prototypes the uncertainty has been rescaled or exaggerated to improve the
display. (In a production tool this rescaling would be controlled by the user.) There are many other use cases (more
complex models and surfaces, uncertain phase boundaries, or just larger parameter uncertainties) that might raise
different utility issues for the visualization prototypes, but the data set generated represents a realistic situation.

Finally, recall that the goal of the MMUV prototypes is to visualize the uncertainty in the material model itself,
and not the uncertainty in engineering simulation results. We expect that simulation data (with or without uncertainty
information) could be displayed in addition to the material model uncertainty.

3.1 Point Cloud

The first prototype, shown in Fig. 2, implements a technique presented in [15] that represents uncertainty by a cloud
of points. The emphasis of this prototype is to show uncertainty in direct relation to the surface. The distance between
each point and the surface is random, but within a range defined by the local uncertainty associated with a point on
the surface. The algorithm creates a cloud of points that extends further away from the surface in regions of high
uncertainty, and remains closer to the surface in regions of lower uncertainty. Additionally, the transparency of each
point can be varied with the uncertainty, so points of higher uncertainty become more transparent. This creates a
visual effect that feeds the expectation of the human visual system, where regions of low uncertainty appear crisp and
solid, and regions of higher uncertainty appear hazy and indistinct. Finally, the points can be colored by another scalar

FIG. 2: View of the point cloud prototype. The mean pressure surface is viewed nearly from the edge, and is colored
in red for the lowest uncertainty, and dark blue for the highest. The point cloud is colored in the same way, but in
addition, the points are opaque for the lowest uncertainty and transparent for the highest.
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value, such as temperature or internal energy, and thus simultaneously convey scalar data in addition to uncertainty
information.

3.2 Surface Animation

The second prototype is based on a technique described in [16] that uses animated visual vibrations of the points
defining a surface to show uncertainty in the surface location. A fixed, semi-transparent mean surface provides a
reference. In the animation, another solid surface sweeps through one standard deviation above and below the mean
surface, with the animation transition defined by the sinusoid equation:

V =
c sin(2πpt + π

2 ) + 1
2

+ f (7)

whereV is the location of the vertex along the surface normal,c is the amplitude of the oscillation,p is the period,f
is the floor of the oscillation, andt is time. The sinusoid defines a smooth transition between the floor and amplitude
over time for each vertex in the surface mesh. If the floor and amplitude for each vertex correspond to the uncertainty
at that point on the surface, then the viewer’s eye will naturally be drawn to areas of high uncertainty as the surface
animates. Other oscillation functions could be used that cause more rapid transitions between states, such as step and
sawtooth functions. Figure 3 shows three frames of the animation.

3.3 Bounding Statistics

The third prototype uses statistics similar to the traditional boxplot [17] to bound the valid regions of the simulation.
The minimum, maximum, and mean surfaces are calculated pointwise (i.e., for each density-temperature point), as is
the standard deviation across all surfaces. The user controls what is displayed through a graphical interface, which
provides options to show each of the original pressure surfaces and contextual surfaces such as the mean +/– standard
deviation. Data values can be color-mapped onto the mean surface and the user may choose which data values are
displayed. Figure 4 shows a screenshot of the prototype. The mean surface is shown colored by the pressure, and is
flanked by the minimum and maximum surfaces which are partially transparent to reduce visual clutter. Two of the
original surface realizations are shown (pink and purple, mostly obscured) below the mean surface. The main goal of
this prototype is to show the range of possible pressures (as a function of density and temperature), as well as indicate
where the data is most likely to reside.

3.4 View-Dependent Opacity

The final prototype uses an approach similar to the Blinn lighting model [18], in that the view angle is compared with
the normal of the surface at each individual point. Instead of using this to modulate the lighting, it is used to modulate

FIG. 3: Three frames of the surface animation. The transparent surface represents the fixed, mean pressure surface
and is visible in every frame for reference. The opaque surface sweeps through a region defined by one standard
deviation distance above and below the mean surface. Here, we show the minimal, mean, and maximal position of the
animated surface. Both surfaces are colored by standard deviation, with the largest point of deflection away from the
mean surface shown in red.
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FIG. 4: Prototype using bounding statistics and a graphical user interface to explore the data set. The mean surface
is shown along with the minimum and maximum surfaces (with partial transparency) and two surface realizations (in
pink and purple). Through a series of buttons, the user can control which surfaces to display.

the opacity of the surface at each point. In this prototype the technique is extended to display a collection of surfaces,
each rendered individually. For this prototype the internal energy was used for the test data, rather than the pressure,
because the internal energy surfaces have a greater variation in the surface normal than the pressure surfaces. For
each density (ρ) and temperature (T ) pair, the transparencyσρ,T is computed as the standard deviation of the internal
energy across the surface realizations; in regions where the differences between the surfaces are large, the transparency
will be large. At each density-temperature point, the transparency is evenly distributed to each surface. That is, the
transparency of each of theN surfaces isN ∗σρ,T , so that when looking through allN surfaces the transparency atρ,
T , isσρ,T . The last step of the algorithm is to apply the dependence of the viewpoint to the transparency. If the vector
from the viewpoint to a point on the surface isvρ,T and the surface normal at that point isnρ,T , then the transparency
is multiplied byv · n. When the viewpoint is normal to the surface, the transparency of each surface is unchanged,
but as the viewpoint becomes more oblique, the transparency is reduced. When the viewer is at an oblique angle, the
surface is essentially opaque, regardless of the underlying surface’s transparency.

The motivation behind this approach can be understood by considering objects embedded within the collection
of surfaces. When the viewpoint is normal to the surfaces, the surfaces are transparent and objects inside (such as
point glyphs representing simulation data) are clearly visible. This allows the viewer to determine where the object is
positioned in depth because an object farther from the viewer will be obscured by more partially transparent surfaces,
while a closer object will be less obscured; see Fig. 5, left. When the surfaces are viewed at oblique angles, or from
the side, the surfaces become opaque. The embedded object’s position with respect to the surfaces is apparent because
the individual surfaces can be more easily distinguished from this viewpoint, as shown in Fig. 5, right. Of the different
prototypes, this technique is the most complex and the least mature, and significant effort would be required to develop
a production capability.
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FIG. 5: View-dependent opacity prototype. Pressure surfaces are colored by uncertainty, with blue indicating low
uncertainty and red indicating high. Individual surface opacities are also dependent on uncertainty. The background
grid is provided so that different levels of opacity can be distinguished. Normal view (left): The view direction is
nearly aligned with the surface normals of the red edges of the pressure surface realizations, and the surfaces are
at nearly maximum transparency. The spherical object is partially visible behind several of the surfaces. Edge view
(right): The view direction is nearly orthogonal to the surface normals of the pressure surfaces, and the surfaces are
essentially opaque. The location of the spherical object within the collection of surfaces is easy to determine because
the surfaces are distinct from this viewpoint.

4. ROLES FOR MATERIAL MODEL UNCERTAINTY VISUALIZATION

After reviewing and analyzing the feedback from the focus groups, several themes emerged. In this section we begin
with the themes more closely tied to the prototype visualizations, then move to the broader role visualization can play
in addressing the needs of the material model stakeholders.

4.1 The Different Prototypes Were Suited to Different Uses

Each visualization prototype has different features. Participants found that the features could be positive or negative,
depending on the use case. The point cloud prototype was effective at showing how the uncertainty varied in different
areas of the domain. As intended, the points immediately conveyed a sense that the surface was not known precisely.
However, because points represented the uncertainty of the material model, participants thought another mechanism
would be needed to show simulation data, which would, most naturally, also be represented by points. A second
concern, particularly for material modelers, was that important correlations were lost through the statistical processing
of the EOS data—all the individual surfaces were averaged to compute the mean surface, and the point cloud was
generated from the standard deviation with respect to the average surface.

The bounding statistics prototype also applied statistical processing, but maintained the original surfaces. While
the emphasis of the prototypes was on visualization techniques, participants vocally supported the ability to display
or hide the individual surfaces and statistically generated surfaces. The bounding surface technique worked well for
this data set, but participants were not sure how effective it would be for a larger number of surfaces or for multiphase
surfaces, which have more geometric complexity.

The surface animation prototype was developed after the others, in response to participants’ desire to see individual
surfaces and variation within the set, but without overwhelming the viewer by displaying all the information at once.
The view-dependent opacity prototype was less intuitive to participants because initially, it was not clear why the
opacity changed with the viewing angle. However, the representative point of simulation data allowed participants to
grasp the value of seeing the EOS surface, the associated uncertainty, and simulation data at the same time—as the
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uncertainty increased the surfaces became more transparent, and one would see simulation data more clearly when it
moved into an uncertain region, identifying a cause for concern.

4.2 Surface Data are not Enough

The EOS surface, whether for pressure, energy, or another thermodynamic variable, provides an overview of the ma-
terial behavior, but the surface in and of itself provides just the context. Participants expressed the need for various
types of references to connect the surface to their understanding of the material behavior. Axes and contours labeled
with numerical values would provide quantitative references. Domain-specific landmarks, such as phase boundaries,
Hugoniots, isentropes, and isotherms would provide a link back to traditional two-dimensional plots (see below.) For
analysts, simulation results must be displayed on the surface to identify the region of interest; the EOS uncertainty,
while highly desired, is only meaningful to analysts in relation to the simulation data. Even when quantified uncer-
tainty is not available, plotting the experimental data to which the model was calibrated would suggest a region of
higher confidence to an analyst. For material modelers, simulation data is still informative, but curves with physical
meaning (Hugoniots, isentropes, etc.) are more important. A key insight for visualization specialists is that mak-
ing three-dimensional representations usable, useful, and adoptable across the community is likely to require careful
interaction design.

4.3 Two-Dimensional Graphics Remain the Standard

The focus group participants were intrigued by the idea of having three-dimensional, interactive visualizations to en-
hance their understanding of material model dynamics. However, the participants also indicated that two-dimensional
plots of, e.g., curves in the pressure-density plane are the existing lingua franca of material model representation;
these plots are regularly shown in textbooks and the academic literature on the subject. The stakeholder community
is already familiar with this visual form for material model information, so this view leverages previously developed
mental models. Two-dimensional plots are relatively information impoverished, given the complexity and uncertainty
that characterizes most material models, but they are easy to generate, read, and share. Three-dimensional, interactive
visualizations can carry a great deal more information, and participants valued the “big-picture” view of the thermo-
dynamic space. One participant remarked that he would start with a three-dimensional view to get a qualitative feel
for the context, but wanted the ability to zoom in on a particular region of interest and see traditional two-dimensional
plots because they were “more quantitative.” For this application, effective visualization may depend more on the
timely delivery of a key existing technique than discovering or developing a new technique.

4.4 Visualization to Compare and Select Material Models

As mentioned in the Introduction, material models are inputs to the simulation code; that is, analysts specify the
material models before the simulations can be run. Analysts noted that selecting one material model from several
possible choices was hindered by a lack of information about each model, and often sought out a colleague or (if
available) a material modeler for guidance. Minimally, one would like to know the range of validity of each model.
In addition, the intended application, any articles or documents on the theory behind the model, and the experimental
data used to calibrate the model would guide the user relative to their own application. Analysts usually have some
idea of the densities, temperatures, and pressures a material is likely to experience in their application. Comparative
visualization of the different surfaces for those conditions, particularly if uncertainty were displayed for each candidate
model, would allow analysts to choose based on quantitative information.

4.5 Visualization to Analyze Results

The most readily apparent role for visualization is to aid the analysis of the simulation results. According to the focus
groups, there are three primary use cases. The first is to “debug” a simulation that has crashed. For some engineering
codes, a majority of simulation failures can be traced to the material model; sometimes the material model is a poor
model, sometimes the EOS is being sampled outside (perhaps far outside) its range of validity, and sometimes the
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material model catches an unrelated error committed far upstream. In all these cases, visualization of simulation data
on the EOS surface can provide insight and expose patterns in failures that are difficult to identify on a case by case
basis.

A second use case is to assess whether or not a simulation relies on EOS information from a region of high
uncertainty. The prototypes display EOS models and their associated uncertainty; by adding the time-dependent paths
of simulation data, such as element or cell values, or passive tracers used as diagnostics, an analyst could judge whether
the EOS uncertainty was important for that particular simulation. For example, an analyst could conclude that while
regions of high uncertainty exist in the model, none of the material in the simulation experienced conditions in those
regions. Alternatively, they might observe that a critical part experienced a temperature near a phase transition, and
the phase boundary is a region of high uncertainty; in this case, more simulations might be run to investigate the effect
of crossing the phase boundary.

Finally, visualizing simulation data simultaneously with material model data can provide insight into simulation
results. If in the previous example, the phase boundary was a region of low uncertainty, the analyst might modify
their design so their part came closer to the phase transition to improve performance of the device. Of course, these
are hypothetical examples, but participants had tried to answer similar questions about their own simulations and, if
answers were obtainable, they often required a lot of time and effort. The material modelers who participated in the
groups indicated that more detailed visualizations could support better understanding of the sources and degree of
uncertainty in various regions of material behavior.

4.6 Visualization for Communication

Material modelers, code developers, and analysts all recognized that communication about material models was a
weak point in their work. Analysts were concerned that they had little guidance in choosing models for their sim-
ulations. Several code developers and material modelers recalled frustration that they could not explain a particular
material model issue to an analyst in a way the analyst could understand it; they could not describe a complex structure
in their own mental model to someone that did not have the same mental model and domain-specific vocabulary. The
visualization of material models can alleviate these issues by providing a common view for the different stakehold-
ers. Visualization can also be used as a training and learning tool for more experienced practitioners as well as those
new to the field. Visualization enables analysts to explain the reasoning and data behind their conclusions to sponsors
and decision makers. Finally, material model visualization can be used to help researchers, managers, and funding
agencies identify gaps in knowledge and prioritize resources to close those gaps.

4.7 Provenance

Our assumption has been that uncertainty is a mathematical object that can be quantified, propagated, plotted, and
visualized. But a number of participants identified a clarity about a model’s origins and history, or provenance, as
highly desirable. The lack of provenance is a subjective uncertainty that cannot be quantified. While quantified un-
certainties for a particular model can, in principle, be propagated across the entire distributed workflow, stakeholders
would invariably be more comfortable if the provenance of the model were known. Provenance provides subjective
confidence not just in the model, but in the quantified uncertainty of the model.

5. CONCLUSION

The uncertainty of a material model can mean different things to material modelers, analysts, and the code developers
who incorporate the models into the engineering simulation codes that the analysts use. The focus group approach
revealed a distributed information workflow around the development and use of EOS models, and that information
bottlenecks in this workflow had organizational as well as technical origins. Visualization prototypes anchored the
discussions and better differentiated the perspectives of the different stakeholders. There is a clear demand for a
visualization capability for EOS models and their uncertainties. This capability would improve communication across
the workflow, as well as provide an analysis tool for material modelers and, if simulation data can be incorporated, for
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analysts and code developers. The complexity and diversity of material modeling and the abstract nature of uncertainty
make the development of an effective tool challenging, but collaborative interaction between stakeholders and software
developers will ensure the utility and usability of a such a tool.
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