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ABSTRACT: Nitrite and H,O,, long-lived molecular species from cold atmospheric plasma
(CAP) and plasma-activated medium (PAM), reach tumor target cells in vitro and in vivo. Through
several steps, the interaction between nitrite and H,0, leads to generation of singlet oxygen ('O,).
'0, then interacts with a specific biochemical switchboard on tumor cells that is composed of cat-
alase, superoxide dismutase (SOD), first aptosis signal (FAS) receptor, and nicotinamide adenine
dinucleotide phosphate (NADPH) oxidase. As a result, local inactivation of catalase by minute
concentrations of primary singlet oxygen opens a strong autoamplificatory sustained process of
secondary singlet oxygen generation and catalase inactivation. This process is driven by tumor
cell-specific NADPH oxidase-1 and spreads within the tumor cell population. The concerted ac-
tion of singlet oxygen interaction with catalase, SOD, and FAS receptor causes an efficient mode
of synergistic interaction. Defined reactive oxygen and reactive nitrogen species (ROS/RNS) such
as H,0, and nitrite have multiple functions in this process. Catalase-mediated oxidation of nitrite
enhances generation of nitrogen dioxide, which is rate limiting for singlet oxygen generation.
Before singlet oxygen—mediated inactivation of catalase and, subsequently, reactivated intercel-
Iular ROS/RNS signaling can activate the mitochondrial pathway of apoptosis, counteraction of
glutathione to lipid peroxidation must be abrogated through aquaporin-mediated influx of H,0O,
into cells. CAP- and PAM-dependent immunogenic cell death triggers a strong immune response
that finalizes antitumor action in vivo. Thus, the high efficiency of CAP and PAM seem to depend
on concerted action of several dominant steps and their autoamplificatory potential.

KEY WORDS: cold atmospheric plasma, plasma-activated medium, singlet oxygen, catalase,
immunogenic cell death

I. INTRODUCTION

The complexity of the physics and chemistry of cold atmospheric plasma (CAP) and
plasma-activated medium (PAM) is paralleled by their striking biological effects, ranging
from antimicrobial action to stimulating wound healing and impressive antitumor effects
in vitro and in vivo.'"' CAP and PAM represent a reactive oxygen and reactive nitrogen
species (ROS/RNS)-dependent system that may be applicable to an impressively wide
range of tumors that are derived from different tissues and show a high degree of selective
action in most systems studied. CAP and PAM are unique with respect to their mode of
initial interaction with tumor cells and tumor tissue: Initial interaction of ROS and RNS
with tumor cells occurs primarily on the outside of the cells. No other experimental an-
titumor system has this specific feature. Even photodynamic therapy that uses the power
of one defined initial ROS, that is, singlet oxygen, does not apply its key molecule to the
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outside of malignant cells, because the photosensitizer is given sufficient time to enter
cells before illumination triggers intracellular production of singlet oxygen.

Novel insights into the chemical biology of malignant cells during tumor progres-
sion, rich literature on CAP- and PAM-dependent chemistry and biology, and data on
the interaction of defined ROS and RNS with malignant and nonmalignant cells allow
investigators to propose a potential mechanism of CAP- and PAM-dependent antitumor
effects.?*?! The high efficiency and impressive selectivity of CAP- and PAM-mediated
antitumor effects have served to inspire us to search for evidence-based potential syn-
ergistic effects that may be inherent to CAP and PAM action. The biochemical basis
of these synergistic effects is discussed in this conceptional review. Detailed knowl-
edge about these synergistic effects may be valuable for further optimization of CAP or
PAM treatment. This may become especially relevant under conditions allowing only
the application of lower doses, such as future endoscopic application of CAP or PAM to
tumors in internal organs.

[I. CONCEPTIONAL REVIEW
A. Basic Principles of CAP and PAM Action
1. Physical Plasma and Plasma Medicine

The gaseous and liquid phases of CAP are a rich source of radical and nonradical ROS/
RNS.""" Due to variable lifetimes, ranges of action, and multiple potentials of inter-
action, these species represent a unique scenario in ROS/RNS chemical biology. The
treatment of media with CAP results in generation of PAM that maintains the major
biological effects of CAP, although it only contains long-lived species from CAP such
as nitrite, nitrate, and H,0,.***

The study of the effects of exogenous ROS/RNS in CAP and PAM on biological sys-
tems has opened the exiting new field of plasma medicine.>*¢#%2635 CAP and PAM cause
impressive antibacterial’*>* and antiviral effects®” and benefit wound healing*** and treat-
ment of actinic keratosis.***® A particular focus is on promising in vitro and in vivo anti-
tumor effects on a broad variety of tumor systems.®*1223047-55 Clinical application of CAP
in tumor therapy yielded the first encouraging results without severe side effects.?!-34¢
Although CAP and PAM seem to target a rather general principle regarding tumor cells,
the mechanisms underlying their antitumor action are still a matter of scientific debate.

2. CAP- and PAM-Mediated Antitumor Effects

In most studies, antitumor effects of CAP and PAM are found to be selective with re-
spect to the malignant phenotype of target cells in vitro and in vivo.?>37-%8 Only a few
reports claim to have found nonselective apoptosis-inducing effects of CAP or PAM. %7
Further studies, including those for standardizing CAP and PAM doses and composition,

Plasma Medicine



CAP and PAM-Mediated Signaling 59

may clarify whether this discrepancy might simply be explained by a conceivable cor-
relation between doses and selectivity or nonselectivity of action.

a. Initial Effects of CAP and PAM on Tumor Cells

General agreement exists that initial CAP effects on tumor cells are mediated by CAP-
derived ROS/RNS and amplified by intracellular ROS 8%13.29.3047.48.5051.52-5574 Because
apoptosis is induced in areas of treated tumors that are not directly reached by constitu-
ents of CAP, a self-perpetuating signaling system was postulated.'>!32%47533 Tumor treat-
ment with CAP and PAM therefore seems to have a strong conceptual and mechanistic
overlap with other ROS/RNS-dependent treatments, such as photodynamic therapy and
modulating the endogenous NO level of tumor cells for subsequent ROS/RNS-driven
processes that lead to selective apoptosis induction in tumor cells.”>’® Therefore, the
well-characterized ROS/RNS composition of CAP and PAM and the chance to modu-
late their composition offer great analytical potential for research on antitumor action
of CAP and PAM and their application. Analogous to photodynamic therapy that re-
quires interaction between an initial singlet oxygen—dependent step and a subsequent
immunological process,” CAP and PAM action may also be connected to strong im-
munological processes.

b. Immunogenic Cell Death Induced by CAP and PAM

It seems that CAP- and PAM-dependent selective apoptosis induction in tumor cells has
characteristics of immunogenic cell death; that is, stimulation of dendritic cells that thus
provokes subsequent activation of cytotoxic T cells.”** In addition, CAP gives rise to
activation of cytotoxic macrophages.*® The findings that CAP- and PAM-induced cell
death may trigger an additional strong and selective immunological antitumor effect,
that is far ranging within the tumor and the body, is in perfect agreement with the general
concept that immunological cell death is a necessary element in finalizing tumor treat-
ment by various antitumor agents.””#7-!

3. Common Principles of CAP and PAM Action in Tumor Cells

It is intriguing that PAM mimics antimicrobial and antitumor effects of CAP,?>2438.58.92-98
although its composition seems to be restricted to H,O,, nitrite, and nitrate.> > How-
ever, it is important to consider that the spectrum of species contained in the liquid
phase of CAP that can actually reach tumor cells in vitro or in vivo depends essentially
on volume and composition of medium or biological material above or around the target
cells. Highly reactive CAP species may likely be filtered out before they can react with
target cells, whereas long-lived and far-ranging species such as H,O,, nitrite, and nitrate
have a good chance of reaching target cells. Model experiments show that CAP-derived
molecular species that can actually reach a tumor in vivo may be the same as those found
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in PAM.”"'% How can relatively simple species such as H,O,, nitrite, and nitrate mediate
such efficient, complex, and selective effects on tumor cells?

4. Divergent Working Hypotheses for CAP and PAM Action
a. Classical Concept for CAP and PAM: Direct Action on Target Cells

Working hypotheses of most investigators were previously based on assumptions that
the molecular species acting selectively on tumor cells are (1) already present in CAP
or PAM itself, and (2) present at sufficiently high concentrations to allow direct induc-
tion of apoptotic or necrotic cell death. However, this conceptional approach has not yet
led to the establishment of an experimentally determined concise model for CAP- and
PAM-dependent signaling chemistry that is in perfect agreement with existing central
biological and chemical observations.

H,O, in particular had often been assumed to act as a direct, selective apoptosis inducer of
CAP and PAM. However, this assumption disagrees with experimental assessments showing
that tumor cells are less sensitive to exogenous H,0, than nonmalignant cells.'*'* This is
due to the expression of membrane-associated catalase on the tumor cell membrane 221105-114
Therefore, H,O, by itself cannot cause selective apoptosis induction in tumor cells.

b. Novel Concept for CAP and PAM Action: Triggering Specific Cellular
and Intercellular Signaling Pathways

An alternative model to explain selective antitumor action of CAP and PAM was pro-
posed by Bauer and Graves.”**' This model is based on the concept that an initially
low concentration of singlet oxygen contained in or generated by CAP and PAM is
insufficient to induce cell death directly but triggers tumor cells to generate higher con-
centrations of secondary singlet oxygen in an autoamplificatory process. This leads to
inactivation of protective catalase in the membrane of the initially targeted cell, fol-
lowed by a bystander signaling-like spread of catalase inactivation on neighboring cells.
Finally, this allows reactivation of intercellular ROS/RNS-dependent apoptosis-induc-
ing signaling within the population of tumor cells. This model is based on experimental
evidence that was obtained using multiple approaches in which singlet oxygen—depen-
dent effects on tumor cells were studied.” 76191157117

The initially determining switching-on effect by CAP- or PAM-derived singlet oxy-
gen allows strong subsequent and continuous generation of secondary singlet oxygen by
tumor cells. This is based on their active nicotinamide adenine dinucleotide phosphate
(NADPH) oxidase (NOX) and NO synthase (NOS), with H,O, and peroxynitrite acting
as intermediates.'*!">!'7 Selectivity of CAP and PAM action for tumor cells is thus war-
ranted by the (1) initial singlet oxygen/catalase interaction, (2) potential of tumor cells
(but not nonmalignant cells) to drive NOX1- and NOS-dependent generation of second-
ary singlet oxygen, and (3) NOX1-driven intercellular ROS/RNS-dependent apoptosis-
inducing signaling after catalase inactivation.
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c. Role of Aquaporins during CAP and PAM Action

Yan et al. presented strong evidence for a dominant controlling function of aquaporins
related to the action of CAP and PAM.!'8!"° These investigators also suggested that
aquaporins are primary interaction partners for CAP- or PAM-derived H,O,. In their
model, selectivity of CAP and PAM action for tumor cells is explained by the higher
concentration of aquaporins in tumor cell membranes. However, this model did not
take into account that membrane-associated catalase on tumor cells may decompose
exogenous H O, before it can pass through aquaporins. Therefore, Bauer suggested
that the contribution of aquaporins to the sensitization of tumor cells by CAP and PAM
requires preceding catalase inactivation.?! Recently, this concept was experimentally
verified in kinetics studies showing that aquaporin action was required after catalase
inactivation due to singlet oxygen derived from CAP or generated by PAM (Bauer,
manuscript in preparation). Because glutathione depletion substitutes for aquaporin
function, the significance of aquaporin-dependent influx of H,O, seems to be related
to sensitization of tumor cells for exogenous ROS effects through reduced endogenous
glutathione levels.

Completed experimental work using a bottom-up experimental approach with com-
pounds that are found in PAM confirmed central predictions of our previous models.
A portion of these data was presented at the 7th International Conference on Plasma
Medicine (ICPM-7) in Phildadelphia.

B. Chemical Biology of CAP and PAM Interaction with Tumor Cell Surface

Evaluation of possible interactions of CAP and PAM with the surface of tumor cells
requires (1) detailed knowledge of the complex nature of the membrane of tumor
cells,27610811LU2 (DY composition of CAP and PAM,''? (3) free diffusion path length of
CAP- and PAM-derived ROS/RNS, and (4) scavenging effect of biological materials for
CAP- and PAM-derived molecular species.” 1%

1. Biochemistry of Malignant and Nonmalignant Cell Surfaces

Essential aspects of the surface of tumor cells compared to nonmalignant cells are
shown in Fig. 1. These central aspects include active NOX1 (the hallmark of malig-
nant cells)'?*-12411L112 and membrane-associated catalase that protects tumor cells from
NOX1-driven intercellular ROS/RNS signaling. Because NOX-derived superoxide
anions have the potential to inhibit catalase,'>'*® catalase function requires the paral-
lel expression of membrane-associated superoxide dismutase (SOD) that reduces the
concentration of superoxide anions. Whereas the concentration of membrane-associated
catalase is sufficiently high to completely prevent intercellular ROS/RNS signaling,!95:108
SOD concentration on the surface does not allow complete removal of free superoxide
anions but ensures catalase function by reducing concentration of superoxide anions to
a level that does not lead to inhibition of catalase.'*'*
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FIG. 1: Interaction of CAP with tumor cells and nonmalignant cells. (A) Tumor cells. The mem-
brane of bona fide tumor cells contains superoxide anion—generating NOX1 and dual oxidase
(DUOX), which consists of a peroxidase domain (POD) and a NOX domain. POD is removed
from DUOX through matrix metalloprotease (MMP) action. Catalase (CAT) is attached to the
outside of the membrane and decomposes the H,O, and peroxynitrite that is generated by tumor
cells. SOD that is attached to the membrane prevents superoxide anion—mediated inhibition of
catalase. The membrane contains aquaporins (AP), proton pumps (PP), and FAS receptor. CAP-
derived H,O, (1) and peroxynitrite (2) is decomposed by catalase, whereas NO is oxidized by
catalase (3). Oxidation of NO requires the formation of compound I through catalase/H,O, inter-
action. Protonation of hypochloride anions leads to the formation of HOCI (4). The interaction
of HOCI with superoxide anions (5) causes generation of hydroxyl radicals that induce lipid
peroxidation (6). (B) Nonmalignant cells. H,O, passes the membrane through aquaporins (1) and
is subject to intracellular Fenton chemistry (2),(3), resulting in damage and apoptosis-inducing
hydroxyl radicals. Peroxynitrite causes lipid peroxidation (LPO) and apoptosis through (4)—(6).
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Further membrane elements of high significance for signaling effects are aquaporins
that control the influx of H,O, into cells and proton pumps that allow conversion of per-
oxynitrite to peroxynitrous acid in close vicinity to the membrane.

2. Conceivable Interactions between CAP and PAM ROS/RNS and the
Cell Surface

CAP contains a plethora of defined ROS/RNS, electrons, and photons, as summa-
rized in Fig. 1(A)."" Biological material surrounding the tumor and the layer of
medium above tumor cells in vitro most likely consumes most of the highly reactive
species derived from CAP or generated through CAP/liquid-phase interaction. This
process thus selects for a few long-lived species. Therefore, CAP-derived electrons,
photons, hydroxyl radicals, and superoxide anions seem to have no chance to reach
tumors in Vivo or tumor cells in vitro at concentrations that might potentially induce
biological effects.”® 1%

Because the surface of tumor cells expresses catalase and SOD, CAP- or PAM-
derived species with strong apoptosis-related potential such as H,O,, peroxynitrite, or
NO are efficiently decomposed (H,O,, peroxynitrite) or oxidized (NO) by tumor cell
protective catalase.?"'%12* Thus, they have no chance to induce apoptosis in tumor cells,
unless they are applied at very high concentrations. Hypochloride anions are potentially
able to generate HOCI after approaching proton pumps in the membrane, followed by
hydroxyl radical generation after HOCl/superoxide anion interaction.'** But HOCI also
likely reacts with biological material surrounding the tumor. In addition, its apoptosis-
inducing reaction does not have obvious potential to trigger self-perpetuation of the
process. Therefore, the role of HOCI is rather limited for triggering a minor apoptotic
response. This limitation might also be due to the absence of HOCI catalase inhibition,
preventing influx of H,O, into tumor cells. Therefore, the counteraction of intracellular
glutathione peroxidase-4/glutathione for lipid peroxidation impedes the effect of HOCI-
derived hydroxyl radicals.

Because nonmalignant cells do not express NOX1, and in particular have no cata-
lase or SOD on their surface [Fig. 1(B)], CAP-derived hydrogen peroxide and per-
oxynitrite at sufficiently high concentrations may induce apoptosis in nonmalignant
cells.'**!® Because nonmalignant cells are more highly affected by exogenous H,O,
and peroxynitrite than are catalase-bearing tumor cells, the concentration of these two
species in CAP and PAM must be below an apoptosis-inducing concentration for non-
malignant cells, when CAP- and PAM-mediated selective action toward tumor cells
and sparing of nonmalignant accompanying cells would occur. Recent experimental
evidence (Bauer, manuscript in preparation) shows that H,O, concentrations that are
too low to induce apoptosis in nonmalignant cells are sufficient to allow enough sin-
glet oxygen generation to trigger cascades that lead to tumor cell death when com-
bined with nitrite. Under these conditions, generation of low concentrations of singlet
oxygen is ensured and seems to drive the subsequent biochemical steps that lead to
tumor cell apoptosis.
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FIG. 2: Interaction of PAM with tumor cells and nonmalignant cells. PAM essentially contains
H,0,, nitrite, and nitrate. H,O, is decomposed by membrane-associated catalase of tumor cells
(A) and may induce apoptosis in nonmalignant cells through (1)—(3) (B), provided that it is pres-
ent at sufficiently high concentrations. Selective apoptosis induction in tumor cells therefore
requires the concentration of H,O, to be too low to affect nonmalignant cells, and the reaction

between H,O, and nitrite must lead to generation of singlet oxygen, as outlined in Fig. 3.

It is obvious in Fig. 2 that H O,, which is contained in PAM, is most likely decom-
posed by tumor cells, unless its concentration is extremely high. Very high concentra-
tions of H,O, can lead to SOD inactivation, followed by superoxide anion-mediated
inhibition of neighboring catalase and onset of singlet oxygen—generation of H O,."”’
However, the high concentrations of H,O, that are required for these effects do not
allow selective apoptosis induction in tumor cells, because nonmalignant cells are af-
fected by H,O, even more strongly than tumor cells.'” Therefore, we can conclude that
establishment of a selective antitumor effect requires that H,O, in PAM must be below
an apoptosis-inducing concentration for nonmalignant cells. It is also obvious that the
biological effect of PAM on tumor cells requires generation of a signaling species from
its constituents to achieve specific apoptosis induction in tumor cells.
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3. Signaling Effects through *O, Derived from CAP and PAM

Chemical biological effects of singlet oxygen that are generated by an illuminated
photosensitizer shows that extracellular singlet oxygen efficiently mediates apoptosis
induction in tumor cells, without affecting their nonmalignant counterparts.''> The
selectivity of apoptosis induction by singlet oxygen is strictly dependent on its gen-
eration outside of the cells; it was lost when singlet oxygen was generated inside
cells.!’ Tt is thus safe to assume that as singlet oxygen that is derived from CAP or
generated by PAM approaches target cells from the outside, it may exert the same
specific antitumor effects as those established in model experiments with an extracel-
lular photosensitizer. Figure 3(A) illustrates that singlet oxygen that is contained in
CAP has the potential to cause local inactivation of a few catalase molecules on the
surface of tumor cells, in accordance with recent findings.!'>13%13! Figure 3(A) also
shows that the CAP liquid phase, in addition to singlet oxygen, contains various con-
stituents that may lead to the generation of further singlet oxygen molecules through
multiple, interconnected pathways. It becomes obvious that the sequence of reactions
starting with reaction (4) in Fig. 3(A) may create a pathway that causes PAM to gener-
ate 'O, through the scheme shown in Fig. 3(B). The potential relevance of reactions
(1)—(3) in Fig. 3(B) had been already recognized by Girard et al.,** Kurake et al.,” and
Jablonowski and von Woedtke."*?> Due to the relatively low reaction rate of (1), the
importance of this scenario was initially underestimated by the plasma community. In
light of the novel concept that PAM generates signaling molecules rather than directly
damaging tumor cells, the slow reaction 1 can rather be seen as an advantage, because
it ensures long-lasting generation of low concentrations of signaling molecules. It also
ensures the availability of H O, for (4) after (1) is accomplished. Recent experimental
work (Bauer, manuscript in preparation) has confirmed the reaction scheme for PAM
action, as shown in Fig. 3(B).

Multiple completed model experiments that used either direct application of exog-
enous singlet oxygen''® or NO-mediated inhibition of catalase’ %1 demonstrate that
local inactivation of membrane-associated tumor cell catalase provokes a subsequent
autoamplificatory generation of secondary singlet oxygen that is driven by free H,O,
and peroxynitrite at the site of inactivated catalase. Due to the activity of NOX1 and
NOS, tumor cells continuously generate H,O, and peroxynitrite. Thus, the sustained
generation of secondary singlet oxygen is ensured. This is followed by inactivation of
large amounts of tumor cell protective catalase molecules on the tumor cell membrane.
As a result, intercellular apoptosis-inducing ROS/RNS signaling is subsequently re-
activated. We may therefore conclude that low concentrations of singlet oxygen from
CAP or PAM are sufficient to trigger secondary singlet oxygen generation and catalase
inactivation in an autoamplificatory mode. This scenario is summarized in Fig. 4(A)
and has been confirmed by direct experimental approach (Bauer, manuscript in prepa-
ration). In contrast to tumor cells, nonmalignant cells are unaffected by extracellular
singlet oxygen at low to moderate concentrations, because they lack both catalase and
NOX1 [Fig. 4(B)].

Volume 9, Issue 1, 2019



Bauer

66

‘u03Ax0 19[3uls Aq SO[NOd[OW JSB[BIED JO UOIIBAIJOBUL
12007 0] [enuajod oy sey NV ‘Aeam st uf *(V) Ut (81)~(91)(8)—(+) dVD 10J PqLIdsap uonoear ayy 0y A3o[eue ut *(6)—(T) ydnory) uadAxo
19[3u1s MrIdUSS 01 TUAOYINS A1 NI pur ‘O°H JAV Ul uoneidusd uagAxo 19[3uIg (g) dwkzud oy 0] 909 A[IUAIOINS PaIRIduds SI It
18y} papraoid I10juod 9AT)OR JY) B QUIPNSIY YIIM UOTIORAI YINOIy) ase[eied ajeAnoeur o3 [enjudjod oy sey sAemyied osay) Jo [[& woyy udo3Lxo
19[8WS ‘[DOH Pue ‘O ueamiaq uonoeidur oY) ySnory) uoneioussd uaghxo 19[8urs pue [HOH JO uoneouds oy 10 skemyred saneuioe
ozuewwns (G7)—(61) suonoeay *(81) pue (91) ysnoiyl uo3Axo jo[3uls JO UOIIBULIO) A} 0} SPEI[ pIo. oLIUAX0Idd “(#1)—(11) ON JO UOIEPIXO
ySnoxy paeioudss 10 gy ur juasaid aq 01 ‘ON sexmbaz (g1) uonoeay “(s1) 10 (01) “(6) ySnoxy pareiouss oq APAnRUINE AR PIow oLy
-1uAxo1ad “*Q°H paureinoo-q v Suiajoaur {(g)—(9) ySnoiyp (HOON O) proe surudxorad Jo uoneuwio] ay) 03 ped] Aew (1) ot pue 0’y
u29M19q 10 () ON pue suorue aprxoradns uoomidq UOIORIIUI A} Y3NOIY) pAjeIduds 10 (7) JvD Ul judsaid st jey) 9JInIuAxorod uo3Lxo
19[3UIS JO uoneIoUds 03 ANQLIUOD 03 [enudjod [eoTWAYS Y} dARY (PAI UI pa[aqe]) JV) Ul pauIejuod saroads 9A1}0BaI 9Y) JO JSOW ‘UONIPPE U]
(1 uonoea) (‘0,) usSAxo0 19[3uIs sUIRU0d Jy)) ‘dVD) Ul uddAxo 19[3urs Jo s001nos o[dnmA (V) AV Pue dvD Ut ud3Ax0 1913uIS :€ O

e .
iy

JOE a0 g

= fiow

® __y woon'o
o

-

. o
i ’ 0 hn Lﬂ_
o HE- V:_uozu_ fo'm - HOOKO . vy ..M @i.

®% @

AIOH =_[3+ HO - .{

®
O\ 0 v D,

o _DOND e on N m

Plasma Medicine



CAP and PAM-Mediated Signaling 67

FIG. 4: Singlet oxygen from CAP or PAM triggers the generation of secondary singlet oxy-
gen selectively by tumor cells. (A) Tumor cells. Singlet oxygen from CAP or PAM leads to
local inactivation of catalase, followed by free H202 and peroxynitrite in close vicinity of the
inactivated enzyme (1). Free H202 (3) and peroxynitrite (4) allow for the formation of second-
ary singlet oxygen (details in [5]-[10]). Secondary singlet oxygen causes inactivation of further
catalase molecules (11)—(13) that will then allow further generation of singlet oxygen in an auto-
amplificatory process. It is important to note that singlet oxygen generation at the site of inac-
tivated catalase is continuously propagated through a new supply with H202 and peroxynitrite
that are derived from NOX1 and NOS. (B) Nonmalignant cells. Singlet oxygen from CAP or
PAM finds no biologically relevant target structure on nonmalignant cells and therefore produces
no effect (at up to moderately high concentrations).''’

4. Additional Potential Signaling Elements

Ozone has been found to inactivate catalase,'**'** so CAP-derived ozone may potentially
contribute to initial inactivation of tumor cell protective catalase. This would lead to
generation of secondary singlet oxygen, analogous to the scenario triggered by initial
singlet oxygen. Therefore, ozone might act in concert with singlet oxygen to induce the
same signaling process, provided it can reach malignant target cells at sufficiently high
concentrations.
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Free electrons from CAP are not likely to reach the surface of tumors in vivo or tumor
cells in vitro that are covered by a layer of medium. Therefore, electron-dependent re-
duction of catalase compound I (CATFe'Y'= O) to compound IT (CATFe'V= 0), followed
by H,O,-mediated generation of the terminally inactive compound III (CATFe"O,"), is
solely a theoretical possibility, although catalase inactivation through electron transfer
has been observed in electron donors such as methyldopa.''®

C. Potential Synergistic Effects Inherent to CAP and PAM
1. Effects Induced by Singlet Oxygen

a. Synergistic Effects through Parallel Singlet Oxygen-Dependent
Inactivation of Membrane-Associated Catalase and SOD

Due to its higher concentration on the cell membrane, catalase is more likely to react with
the limited concentration of singlet oxygen derived from CAP or PAM than that from
SOD. However, as soon as secondary singlet oxygen is generated through the complex
interaction between H,O, and peroxynitrite at the site of inactivated catalase, chances of
singlet oxygen—dependent inactivation of SOD obviously increase [Fig. 5(A)].1**13! This
then results in a local increase in concentration of NOX-1—derived superoxide anions at
the site of inactivated SOD. Because superoxide anions can inhibit catalase,'>'*® super-
oxide anion—dependent inhibition of catalase in the neighborhood of inactivated SOD
should then trigger higher generation of secondary singlet oxygen through the reaction
between free H,0, and peroxynitrite. One might assume that singlet oxygen—dependent
inactivation of SOD thus merely contributes additively to the biochemical effects of
inactivated catalase. But experimental analysis of specific neutralizing single-domain
antibodies directed toward either catalase or SOD showed that parallel targeting of SOD
and catalase causes a remarkable synergistic effect.'!” Compared to single application of
antibodies, the necessary concentration of the two antibodies used in the synergy experi-
ments could be reduced to < 1% of the value required to achieve the same effect with
single antibodies. It is justified to assume that parallel inactivation of catalase and SOD
by singlet oxygen would cause a similar synergistic effect as that for parallel targeting
with neutralizing antibodies. This mechanism may therefore significantly contribute to
the synergistic potential that is inherent in CAP and PAM and at least partially explain
the striking biological efficiency.

b. Synergistic Effects through Singlet Oxygen-Mediated Activation of
First Apoptosis Signal (FAS) Receptor

Because FAS receptor can be activated by singlet oxygen (even in the absence of a
genuine FAS ligand),'* secondary singlet oxygen generated after initial CAP- or PAM-
dependent singlet oxygen effects on tumor cell catalase can very likely have a chance
to activate FAS receptor in target cells [Fig. 5(B)]. Usually, tumor cells do not express
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FIG. 5: Additional targets for secondary singlet oxygen on tumor cells. (A) Targeting of SOD.
Secondary singlet oxygen (2) generated after the initial action of CAP- or PAM-derived primary
singlet oxygen (1) may hit membrane-associated SOD and inactivate the enzyme through interac-
tion with histidine at its active center.'3*!3! As a consequence, the concentration of NOX-derived
superoxide anions may increase in close vicinity to the inactivated enzyme and cause inhibition
of neighboring catalase molecules.'?"'?® This then triggers further amplification of secondary
singlet oxygen generation. (B) Targeting of FAS receptor. Secondary singlet oxygen may activate
FAS receptor (2),(3).!* As a consequence, caspase-8 is activated by the receptor and enhances
activities of NOX1 and NOS (4)—(7). High local concentrations of NO may reversibly inhibit
catalase (8). This allows further continuous generation of secondary singlet oxygen (9),(10).

sufficient FAS receptor to allow direct death receptor—dependent cell death through the
canonical FAS pathway.”” However, FAS receptor present even at low concentrations
on tumor cells causes a dramatic increase in NOX1 and NOS activities.”!'¢!13¢"13 Thijs
leads to a valuable synergistic effect on singlet oxygen generation and subsequent cata-
lase inactivation. Synergistic enhancement does not occur at very low concentrations of
initially present singlet oxygen.'"® Likewise, intercellular apoptosis-inducing ROS/RNS
signaling after inactivation of catalase may take advantage of the increased concentra-
tions of superoxide anions, NO, and their derivatives after singlet oxygen—mediated
activation of FAS receptor.
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These established scenarios allow us to conclude that in the case where primary sin-
glet oxygen that is derived from CAP or PAM, rather than inactivating catalase, would
inactivate a SOD molecule or activate a FAS receptor, secondary singlet oxygen genera-
tion in an autoamplificatory mode would also be ensured (Fig. 6). Thus, the final out-
come of the treatment would be same as that after initial targeting of catalase by singlet
oxygen. These homologies of action might well contribute to the overall efficiency of
CAP and PAM action.

2. Potential Enhancing Effects of Nitrite

Nitrite is essential as a reaction partner for H O, to generate peroxynitrite [Fig. 7(A)].
Nitrite has no direct apoptosis-inducing potential up to concentrations of 1 mm. Although
(2) and (3) in Fig. 7(A) that lead to singlet oxygen generation through further reactions
of peroxynitrite can be counteracted by the efficient reaction of peroxynitrite with CO,

FIG. 6: Initial targeting of SOD or FAS receptor by primary singlet oxygen derived from CAP
or PAM. When SOD (A) or FAS receptor (B) are targeted by primary singlet oxygen instead of
abundant catalase [as shown in Fig. 4(A)], autoamplification of secondary singlet oxygen genera-
tion and catalase inactivation are nevertheless warranted. This is achieved through (1)—(4) in (A)
and (1),(7) in (B).
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A

FIG. 7: Plasticity of singlet oxygen generation through interaction between the long-lived species
H,0, and nitrite. (A) Role of peroxynitrite. Peroxynitrite is centrally involved in generation of sin-
glet oxygen through the interaction between H,O, and nitrite, following (1)—~(9), as shown earlier.
This pathway is more likely to occur close to the membrane, due to the presence of proton pumps.
As negative side effect, this pathway is minimized by active catalase on tumor cells. Because it is
farther away from the cells, peroxynitrite is more likely to interact with CO, (10). Decomposition
of nitrosoperoxycarboxylate (11) and the reaction between resultant carbonate radicals with H,O,
(12) should allow for generation of singlet oxygen through (13)—(16). (B) Role of nitrite and NO,.
Nitrite (NO;) in PAM or CAP is essential for generation of peroxynitrite (1), whereas the concen-
tration of NO, is rate limiting for generation of peroxynitric acid (5). In concert, these reactions
lead to formation of singlet oxygen (1)—~(8). Even if peroxynitrate (O,NOO") fails to contribute to
generation of singlet oxygen due to (7), NO, generated through this abortive reaction has a chance
to contribute to a new round of peroxynitric acid generation through (9). Even more important for
the supply with NO, is the oxidation of abundant nitrite by catalase (10).
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(10), the overall generation of singlet oxygen are not necessarily reduced, because (11)
and (12) lead to generation of hydroperoxyl radicals that are essential for the formation
of peroxynitric acid and subsequent generation of singlet oxygen through spontaneous
decomposition of peroxynitrate. Thus, the variable reaction potential of peroxynitrite
may ensure that the final outcome of singlet oxygen generation is not altered by variable
reaction profiles. However, the biological effect of singlet oxygen generated through
either pathway is only ensured if singlet oxygen does reach its target structure.

Even if peroxynitrate decomposes into superoxide anions and nitrogen dioxide [(7)
in Fig. 7(B)] rather than into singlet oxygen and nitrite [(8) in Fig. 7(B)], this may not
necessarily reduce overall singlet oxygen generation. NO, derived from (7) may con-
tribute to generation of peroxynitric acid through (9), thus producing a second chance to
enhance singlet oxygen generation.

In light of the relative abundance of nitrite in PAM and the potential of catalase to oxi-
date nitrite to nitrogen dioxide [(10) in Fig. 7(B)], (11) can substantially enhance formation
of peroxynitric acid and singlet oxygen. Thus, nitrite in PAM does not seem to be solely
necessary for initial generation of peroxynitrite (1) but might also enhance singlet oxygen
generation after its oxidation by catalase. The enhancing effects of nitrite and NO, most
likely contribute to the high efficiency of CAP and PAM. Especially, oxidation of CAP-
or PAM-derived nitrite to NO, will also contribute to efficient secondary singlet oxygen
generation because the otherwise rate-limited NO, is then available in relative abundance.

Established reactions between nitrite and catalase are shown in Fig. 8. Figure 8(A)
summarizes three essential functions of catalase (decomposition of H O, and peroxynitrite,
oxidation of NO) and points to the role of compound I in these reactions. Figure 8(B) shows
that nitrite can compete with NO for interactions with compounds I and II. As a result, the
local concentration of NO would be enhanced and lead to formation of additional peroxyni-
trite. Due to the presence of PAM- or CAP-derived H,O, and competition with peroxynitrite
for native catalase, the chances for free peroxynitrite survival may thus increase. This may
then lead to generation of secondary singlet oxygen through (9)—(14) in Fig. 8.

Alternatively, if the competition between nitrite and NO leads to a sufficiently high
NO generation to result in local catalase inhibition [Fig. 9(A)], the resultant free H,0,
and peroxynitrite may establish generation of singlet oxygen and thus establish autoam-
plification of singlet oxygen generation and catalase inactivation.

If CAP- or PAM-derived H,O, transforms compound II (formed through the reac-
tion between nitrite and compound I of catalase) into the terminally inactive compound
I, free H,O, and peroxynitrite might likewise generate singlet oxygen and trigger au-
toamplification [Fig. 9(B)]. This pathway is much more likely to occur after nitrite/cata-
lase interaction than after NO/catalase interaction, because the concentration of nitrite is
several orders of magnitude higher than that of NO.

D. Apoptosis-Inducing Signaling after CAP and PAM Action on Tumor Cells

Following catalase inactivation by secondary singlet oxygen, NO/peroxynitrite and/or
HOCI signaling can be established [Fig. 10(A)]. This occurs analogous to the situation
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FIG. 8: Reaction between catalase and nitrite. (A) Basic reactions of catalase. Catalase de-
composes H,O, in a two-step reaction (1)—(3). This prevents apoptotic induction of tumor cells
through the HOCI signaling pathway (4),(5). Compound I of catalase (CATFe' = O*"), the active
intermediate obtained after catalase interaction with one molecule of H,O,, oxidates NO in a
two-step reaction, with compound II (CATFe'Y = O) acting as intermediate (6)—(8). Eventually,
formed peroxynitrite (9) is decomposed by catalase in a two-step reaction (10),(11), thus pre-
venting apoptosis-inducing NO/peroxynitrite signaling (12),(13). (B) Interaction between nitrite
and catalase. Nitrite contained in PAM or CAP (1) can compete with NO in the interaction with
compound I of catalase (2),(3). Due to the abundance of nitrite, this process can be expected to
be dominant. Free NO (4) then has a high chance of reacting with superoxide anions to form
peroxynitrite (5). Relatively abundant H,O, (6) from PAM or CAP competes with peroxynitrite
for interaction with catalase and thus reduces or prevents (7) and (8). This then allows for singlet
oxygen generation through (9)—(14), followed by inactivation of additional catalase molecules
(15). In this scenario, peroxynitrite formation through interaction between nitrite and H,O, is
not required. A detailed description of catalase function and regulation is available elsewhere.''*
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FIG. 9: Alternative modes of nitrite action. (A) NO-mediated inhibition of catalase. Nitrite from
CAP or PAM (1) efficiently competes with NO for compound I and oxidates to NO, (2),(3). If
free NO reaches local concentrations > 0.18 um, an inactive NO—catalase complex is formed
(5). As aresult, H,O, and peroxynitrite are not decomposed at the site of inhibited catalase and
generate singlet oxygen through (9)—(15). Singlet oxygen then inactivates further catalase mol-
ecules (16). (B) Formation of inactive compound III after nitrite action. Efficient competition of
nitrite with NO as well as H,O, for compound I might lead to a transiently high concentration
of compound II (CATFe' = O) that is converted to the terminally inactive compound III (CAT-
Fe™O,* 7). As aresult, free H,O, and peroxynitrite generate singlet oxygen according to (9)—(15),
as described in (A).

found for other modes of catalase inhibition or inactivation.”!%111-113 Tn the continuous
presence of CAP- or PAM-derived H,O,, HOCI signaling is favored (Bauer, manuscript

in preparation). HOCI and NO/peroxynitrite signaling pathways are finalized by genera-

Plasma Medicine



CAP and PAM-Mediated Signaling 75

® Opmm
oren ®” \©
OEER O, Y

Apoplosis

FIG. 10: Intercellular ROS signaling after singlet oxygen—mediated inactivation of tumor cell
catalase. (A) Balance between extracellular ROS signaling and intracellular glutathione-mediated
protection. After sufficient singlet oxygen—mediated catalase inactivation on the outer surface of
tumor cells, the HOCI signaling pathway (1)—(5) and potentially the NO/peroxynitrite signaling
pathway (6)—(9) are established. Both pathways are finalized by hydroxyl radical-mediated lipid
peroxidation. Initially, glutathione peroxidase and glutathione counteract apoptosis induction by
lipid peroxides.'*® However, the lack of protection by inactivated catalase allows strong influx
of cell-derived H,0O, into cells, leading to efficient depletion of glutathione. This renders the
cells vulnerable to apoptosis induction by lipid peroxidation and intracellular hydroxyl radicals.
(B) Mitochondrial pathway of apoptosis. Lipid peroxides (1) activate sphingomyelinase (2) and
trigger the mitochondrial pathway of apoptosis, mediated by voltage-dependent anion channel
(VDAC) and proteins BAK and BAX and characterized by release of cytochrome ¢ (3), forma-
tion of apoptosome (4), processing of inactive caspase-9 to active caspase-9 (5), and followed by
activation of executing caspase-3 (6)—(8).'*! The role of caspase-8 in this scenario is restricted to
(9)—(11), as long as FAS receptor is typically expressed at low levels.
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tion of hydroxyl radicals that trigger lipid peroxidation. Lipid peroxides can be removed
by intracellular glutathione peroxidase and glutathione.'* This repair reaction initially
interferes with hydroxyl radical-mediated apoptosis induction. However, local inactiva-
tion of catalase by singlet oxygen allows aquaporin-dependent influx of extracellular
H,O, (either derived from CAP or PAM or generated through dismutation of NOX1-
generated superoxide anions). Subsequent glutathione peroxidase/glutathione—medi-
ated decomposition of H,O, leads to decreased intracellular glutathione concentration.
Therefore, interference of glutathione peroxidase-4/glutathione with lipid peroxidation-
dependent triggering of the mitochondrial pathway of apoptosis is gradually abrogated.
This central control step explains the findings by Yan et al., who have convincingly
shown that aquaporins play a central part during CAP- and PAM-dependent apoptosis
induction in malignant cells.!'®!"” Recent experimental evidence supports the concept
that these findings extend to other ROS/RNS-mediated apoptosis-inducing principles
in general.

Following lipid peroxidation and glutathione depletion, the mitochondrial pathway
of apoptosis is activated,'*! summarized in Fig. 10(B). Essential elements are sphingo-
myelinase; mitochondria; the apoptosome consisting of apoptotic protease-inhibiting
factor, cytochrome c, and procaspase-9; and active caspase-9 and -3. Mitochondria in-
volvement in the apoptosis pathway includes release of cytochrome ¢ and decoupling of
the mitochondrial respiratory chain. As a result of decoupling, mitochondria involved
in apoptosis induction generate high concentrations of superoxide anions that are dis-
mutated to H,O, by mitochondrial SOD [Fig. 11(A)]. H,O, may then reach neighboring
intact mitochondria and cause ROS-dependent ROS release through oxidation of the
permeability transition pore, followed by uncoupling of the mitochondrial respiratory
chain.'* In total, this scenario explains the massive increase in ROS (i.e., primarily
H,0,) in cells that undergo the mitochondrial pathway of apoptosis. ROS increase may
promote oxidative effects in the cell population, as suggested by Pletjushkina et al.'*

Cytochrome c that is released from mitochondria has recently been found to use
H,0, to generate HOCI in a reaction analogous to myeloperoxidase or the perioxidase
domain of dual oxidase (Bauer, unpublished result). HOCI that is generated inside cells
through this pathway may (1) oxidate tumor cell antigens, thus making them attractive
to dendritic cells,*'* (2) interact with superoxide anions and generate damaging hy-
droxyl radicals,"**'* or (3) react with either H O, or lipid peroxides and generate singlet
oxygen.!3132 The biological relevance of these massive secondary reactions has not yet
been fully investigated. Detection of mitochondrial singlet oxygen by Bekeschus et al.3
may be due to these reactions following the execution of the mitochondrial pathway of
apoptosis, although these authors may have missed detecting primary and secondary
singlet oxygen on the membrane due to the scavenging function of membrane-associ-
ated catalase.

The role of HOCI does not seem to be restricted to apoptosis induction through
the HOCI signaling pathway. Due to its high reactivity, HOCI can also very efficiently
modify tumor cell antigens and enhance T-cell responses directed to tumor cells.!#14
It is conceivable that HOCI-dependent antigenic modification may act in concert with
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canonical death-associated molecular patterns that are involved in classical immuno-
genic cell death that triggers a T-cell response to tumor cells [Fig. 11(B)]. There is gen-
eral consent that T-cell responses after initial tumor treatment are of central importance
to overall outcome of most if not all antitumor therapies presently under investiga-
tion'77,87—91

[lI. CONCLUSIONS

The selective action of CAP and PAM on tumor cells seems to be based on the interac-
tion between singlet oxygen (derived from CAP or generated through the interaction be-
tween H,O, and nitrite in CAP or PAM) and the specific redox biology-related enzyme
composition on the surface of tumor cells. Of central and determining importance in this
context are membrane-associated catalase and SOD, because they interact with reaction
products of membrane-associated NOX and intracellular NOS. FAS receptor also has a
modulatory role in this context.

This cooperative system of enzymes and FAS receptor represents a tumor cell-spe-
cific biochemical switchboard that can be triggered by singlet oxygen. Catalase and
SOD can be inactivated by singlet oxygen, whereas FAS receptor is activated by singlet
oxygen. Thus, even a very low concentration of singlet oxygen that is derived from
CAP or PAM can establish a strong and sustained biochemical and cellular response
through this mechanism. The maintained and autoamplificatory nature of this response
is due to the

(1) establishment of local concentrations of free H,O, and peroxynitrite at the site
of inactivated catalase molecules,

(2) potential of H,O, and peroxynitrite to interact in a complex series of reactions,
yielding de novo generation of secondary singlet oxygen,

(3) attack of neighboring active catalase and SOD by the secondary singlet oxygen.

After inactivation of a sufficiently high portion of protective catalase, intercellular
ROS/RNS-mediated apoptosis-inducing signaling is established and causes elimination
of malignant cells. Because this biochemical switchboard is unavailable to nonmalig-
nant cells, selectivity of CAP and PAM action for tumor cells is ensured as long as the
dose of CAP and PAM is in a range that does not allow nonselective apoptosis induction
in nonmalignant cells by hydrogen peroxide or peroxynitrite.

These autoamplificatory processes that are activated by singlet oxygen on tumor
cells use, in a sustained mode, the same ROS/RNS that also act in CAP and PAM and
show a partial overlap to intercellular ROS/RNS-dependent apoptosis-inducing signal-
ing. Essential compounds for the autoamplificatory mechanism are superoxide anions,
nitric oxide, nitrogen dioxide, peroxynitrite (ONOO™), peroxynitrous acid (ONOOH),
hydrogen peroxide, hydroxyl radicals, hydroperoxyl radicals, peroxynitrate (O,NOO"),
peroxynitric acid (O,NOOH), and singlet oxygen. Due to involvement of enzymes and
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proton pumps on the tumor cell membrane, this ROS/RNS-dependent process is local-
ized to the membrane. This ensures high efficiency selectivity of these processes.

Catalase inactivation of secondary singlet oxygen far exceeds inactivation of cata-
lase by primary, CAP-, and PAM-generated singlet oxygen. Catalase inactivation allows
an essential aquaporin-mediated influx of tumor cell-derived H,O, into the targeted
cells, causing depletion of intracellular glutathione. This results in the abrogation of
glutathione peroxidase 4/glutathione inhibitory effects to apoptosis-inducing signaling
by lipid peroxides. Hydroxyl radicals induce lipid peroxidation that is generated by in-
tercellular ROS/RNS signaling.

The subsequent induction of the apoptosis mitochondrial pathway results in acti-
vation of caspase-9 and -3. In parallel, the release of cytochrome ¢ in apoptotic cells
increases concentrations of superoxide anions and H,O,, generated by the uncoupled
respiratory chain. The potential contribution of these ROS, arising late in the apoptotic
process of targeted cells, is considered to contribute to the spread of the apoptotic re-
sponse in the cell population.'"*® So far, its potential biological relevance seems to be
underestimated.

These considerations demonstrate the multiple roles of H,O, for the chemical biol-
ogy of CAP and PAM action, starting from an involvement in singlet oxygen formation,
maintenance and modulation of HOCI signaling, to modulation of apoptotic pathways.
These findings add to multiple other roles of H,O, that have been pointed out earlier by
Sies.'**15* The strong ROS/RNS-driven autoamplificatory network induced by CAP and
PAM has inherent potential for the following:

e synergistic interaction between parallel inactivation of membrane-associated
catalase and SOD, because both enzymes are inactivated by singlet oxygen and
biochemically interactive,

e cnhanced effect of singlet oxygen—mediated activated FAS receptor activation,
with an impact on enhancement of superoxide anion and NO production, thus
enhancing generation of secondary singlet oxygen,

e oxidation of nitrite to nitrogen dioxide, which is a rate-limiting reaction partner
during the generation of secondary singlet oxygen,

e interaction of nitrite with the catalase cycle, potentially slowing enzyme activity

e competition between nitrite and NO for the reaction with compound I of cata-
lase, including potential local increase of NO and subsequent inhibition of
catalase.

These potential synergistic interactions between ROS- and RNS-dependent pro-
cesses of CAP and PAM action are the basis for an additional and essential strong immu-
nological process, termed immunogenic cell death, that is characterized by the release
of death-associated molecular patterns (DAMPs). Therefore, the chain of biochemical
and cellular events initiated by CAP- or PAM-derived singlet oxygen and amplified by
sustained generation of cell-derived secondary singlet oxygen leads to massive finaliza-
tion of antitumor action through the immune system. HOCI that is primarily involved
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in intercellular apoptosis-inducing signaling after the inactivation of catalase may also
contribute to immunogenic cell death through modification of tumor cell antigens.

IV. EPILOGUE

We established the novel model of Bauer and Graves*?! in a deductive approach, in
which established knowledge of the composition and action of CAP and PAM was con-
nected to experimentally obtained results involving the differential action of defined
ROS/RNS on malignant and nonmalignant cells.

This model was confirmed in a bottom-up experimental approach using long-lasting
compounds of PAM. A recent experimental approach with CAP and PAM generated by
a plasma generator confirmed the results obtained by the preceding model experiments.
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