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Uncertainty quantification analyses often employ surrogate models as computationally efficient approximations of com-

puter codes simulating the physical phenomena. The accuracy and economy in the construction of surrogate models

depends on the quality and quantity of data collected from the computationally expensive system models. Computa-

tionally efficient methods for accurate surrogate model training are thus required. This paper develops a novel approach

to surrogate model construction based on the hierarchical decomposition of the approximation error. The proposed al-

gorithm employs sparse Gaussian processes on a hierarchical grid to achieve a sparse nonlinear approximation of the

underlying function. In contrast to existing methods, which are based on minimizing prediction variance, the proposed

approach focuses on model bias and aims to improve the quality of reconstruction represented by the model. The perfor-

mance of the algorithm is compared to existing methods using several numerical examples. In the examples considered,

the proposed method demonstrates significant improvement in the quality of reconstruction for the same sample size.
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1. INTRODUCTION

High-fidelity computational models of physical systems play an important role in engineering analyses. Real-world
systems are subject to various sources of uncertainty, suchas physical variability, data uncertainty, and model errors.
Robust analyses of such systems typically require multiplesimulations for quantification and integration of these
uncertainties [1, 2]. However, the high computational costs involved in executing these simulations prohibit their re-
current use in analysis. In such cases, engineering analyses employ a surrogate model to approximate these simulations
due to the low computational costs in evaluating the responses of such approximations [3, 4].

These approximations by surrogate models are not low-fidelity versions of the computer models derived by sim-
plifying the physics of the underlying phenomena. Instead,surrogate model-based approximations aim to reproduce
the input-output relationship implemented by an actual simulation code. Toward this end, surrogate models use the
response of the simulation code over a small subset of the design space and generalize the information contained in
that data over the entire design space,Ω.

The quality of the engineering analysis depends on the accuracy of approximation implemented by the surrogate
model. A typical measure of the accuracy of approximation may be written as follows:

I(Xs) =

∫

Ω

‖f(x) − f̂ (x|Zs)‖dx (1)

wheref(x) is the input-output mapping implemented by the simulation,Zs = {ys, Xs} = {f(xi),xi}k
i=1 is the

training data and̂f(x) is the approximation tof(x) implemented by the surrogate model. A low value ofI(Xs)
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indicates high-fidelity between the underlying function,f , and its reconstruction,̂f , and the quality of reconstruction
depends on the choice ofZs.

The quality of approximation depends on two key factors: (i)selection of the surrogate model form that is able
to match the complexity of the underlying functionf , and (ii) selection of the most informative or useful training
data. The two factors are interlinked: the utility of the data depends on the existence of a model which can extract
the information contained in it, and the ability of the modelto accurately approximate the underlying code depends
on the amount and the quality of data. Thus, in the construction of accurate surrogate models, the two issues—model
construction and training data selection—must be considered together.

In previous work, researchers have employed various types of surrogate models such as Gaussian process re-
gression [5, 6], radial basis functions [7], polynomial response surfaces [3, 8], Splines [9] and polynomial chaos
expansions [10, 11]. These models are based either on statistical or functional approximation theory and are known
to be capable of approximating a wide class of function types[12]. For some applications, studies such as [3, 13]
have evaluated the relative performance of various surrogate model types. Although such studies describe the relative
performance models for a given application; in general, thechoice of the particular surrogate modeling technique em-
ployed to approximate a simulation code is, in practice, arbitrary because, functionally, many of the above-mentioned
surrogate modeling methods are closely related, even if they have different internal parametrizations [5, 14, 15] and
have similar approximation capabilities [9].

Once a surrogate modeling technique is selected, the designof an approximate model then involves (i) selection
of training points and (ii) estimation of the internal parameters of the model. Because the mappingf(x) implied by
the simulation is not known and is expensive to evaluate, theselection of the optimal training point distribution that
minimizes Eq. (1) can neither be determined a priori nor be based on selection criteria based directly onf(x), which
requires extensive evaluation. Consequently, sample selection is necessarily sequential and based on selection criteria
defined on the intermediate estimates of the underlying function provided by the surrogate models.

The use of Gaussian process (GP) regression in the modeling of deterministic computer codes was introduced
by [6]. In that formulation, the underlying function is assumed to represent a particular realization of a GP and
the object of modeling is to identify the particular realization. Typical approaches to training data selection be-
long to the variance reduction class of techniques that borrow from the optimal experiment designs discussed pre-
viously [16–18]. Using the Bayesian approach, MacKay and Tong [19, 20] have described entropy based-sample
selection criteria for reduction of parameter uncertaintyand model discrimination. These criteria are analogous to
their counterparts in optimal experiment design. More recently, Guestrin et al. [21, 22] have proposed a mutual
information-based criterion for reducing a posteriori prediction uncertainty in GP models and presented an approx-
imate polynomial-time algorithm for the problem. Gramacy and Lee [23] employ Gaussian trees to represent non-
stationary processes and employ prediction variance for the design of sample using the space-filling Latin hypercube
designs [24, 25]. In contrast to the above approaches, Bichon et al [26] employ an error measure defined on a GP
models to approximate the reliability limit state, which allows concentration of the sample distribution around the
limit state.

Prediction variance in GP is independent of the actual realization of the underlying function and is instead a
function of the parameters of the assumed process covariance. Thus the variance minimizing sample (VMS) designs
mentioned above are optimal for a class of functions represented by a given set of GP parameters. The resulting
distribution of the training points is uniform throughout the domain and designed to capture the behavior of an entire
class of functions (represented by the surrogate model parameters) rather than the particular realization implied by the
underlying function.

The density and distribution of training points in GP is determined by the covaraiance parameters, which in turn
represent the variation in the underlying function. When the variation in the underlying function is even and spread
throughout the domain, then the distribution of training points that is spread uniformly over the domain is neccessary
and efficient. However, if the variation in the underlying function is localized to only a small part of the domain,
such distributions result in sampling the entire domain based on localized variation. In such cases, VMS represents
an inefficient use of a scarce sample budget. In such cases, a sample distribution correlated with the variation in the
underlying function is desirable. This paper focuses on thegeneration of such training point distributions and the
development of surrogate models to extract of information contained in them.
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In contrast to the selection of training points based on prediction variance (which is solely a property of the
approximating model), this paper explores the possibilityof training point selection based on prediction bias (which
directly describes the relation between the model and the underlying function). Toward this end, first a novel modeling
technique based on hierarchical decomposition of a given function in terms of approximation error is proposed. In this
method, sparse Gaussian processes are employed in a hierarchical decomposition of the model error—each layer of
the model approximates the error in the approximation basedon previous layers.

Next, the bias minimizing sampling (BMS) algorithm is developed as an adaptive algorithm for sequential realiza-
tion of the hierarchical error decomposition model. Using the information contained in the residuals, the BMS algo-
rithm traverses this tree sequentially and adjusts the complexity of the model (in terms of the number of nodes) accord-
ing to the local variation in the underlying function. Furthermore, by using covariance functions with localized/quasi-
localized kernels, and sampling only in the support of the kernels, the algorithm also achieves a nonuniform training
point distribution in which the sample density depends on the variation in the underlying function.

Preliminary results have established the efficiency of thismethod relative to the VMS distributions proposed
earlier [16–20]. Specifically, in tests conducted thus far,BMS samples are seen to provide a significantly better quality
of approximation than VMS for the same number of samples and,thus, BMS appears to represent a much more
efficient procedure for the construction of surrogate models.

The rest of this paper is organized as follows: In Section 2, Gaussian process regression (GPR) is introduced
and its predictive distribution is analyzed. The distribution of the training points selected to minimize the prediction
variance is also analyzed in Section 2. In Section 3, sparse Gaussian processes are motivated as approximations to
the GPR. Sections 2 and 3 form the background for the discussion in Section 4, where the proposed hierarchical
error decomposition using sparse Gaussian processes is introduced. In Section 5, the proposed sequential algorithm
to achieve the hierarchical decomposition suggested in Section 4 is presented. The BMS algorithm is first compared
to VMS in terms of the quality of approximation in Section 5.7. The computational complexities of the two algorithm
are compared in Section 5.8, and finally in Section 5.9, the use of both the algorithms for uncertainty quantification is
illustrated and the estimates of the surrogate models are compared.

2. BACKGROUND

The following notation will be usedf : Ω → <, Ω ∈ <D is the underlying function.xT = {x1,x2, . . . ,xt |xi ∈ Ω}
represents thet training points. The setDT = {xT ,yT } represents the training data, whereyT = {y1,y2, . . . ,yt |yi

= f(xi) + εi} is the set of measured function values or samples,εi ∼ N (0, σ2
n) is the measurement noise, and

fT = {f1, f2, . . . , ft | fi = f(xi)} is the set of underlying function values.
Our objective is to generalize the information contained indata,DT , so as to infer the value of the underlying

function, fP , at any arbitrary set ofp prediction pointsxP ∈ Ω. In this section, GP- and SGP-based regression
techniques are reviewed. Both are probabilistic methods inwhich inference aboutfP is made by computing the
distributionp(fP |DT ). The primary motivation for SGP is developed as a computationally efficient approximation to
GP.

2.1 Gaussian Process Regression

In GPR, it is assumed that the underlying function values represent a particular realization of a GP, and the objective
then is to identify the particular realization based on the training data.

The GP is a generalization of the multivariate Gaussian distribution and thus may be thought of as a collection
(indexed by points in the domain) of multivariate Gaussian random variables. A GP is fully defined with the specifica-
tion of the mean function,m(x), and the covariance functionk(x,x′). In general, these functions must be selected so
as to reflect our assumptions about the underlying function,such as about its stationarity, periodicity, etc. [5, 14, 27].
As is common in literature [5, 6, 28], in this paper it is assumed that the mean function,m(·) = 0 and the covariance
function is the squared exponential function

k(xi,xj ; θ) = θ1 exp

[

−1

2

D
∑

d=1

(xi − xj)
2

li

]

(2)
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Together,Θ = {l, θ1, σn} form the parameters of the covariance function and thus of the GP model. In order to be
able to make predictions using the model, these parameters must be inferred from the given data. A common method
employed is the maximization of the log marginal likelihood[5]:

logp(yT |xT ; Θ) = −1

2
yT(KTT + σ2

nI)−1y − 1

2
log|KTT + σ2

nI| + D

2
log2π (3)

Of special interest are the parameters,l = {l1, l2, . . . , lD} known as length-scale parameters, which correspond
to the length of the variation in function values implied byk(·) in each dimension ofΩ. Authough a small value ofli
indicates significant variation in the function values in theith dimension, a large value ofli indicates that the variablity
in the function value is not impacted by changes in theith dimension.

The GP predictive distribution is given by [5]:p(fP |yT ,xT ,xP , Θ) ∼ N (m,S) with

m = KPT

(

KTT + σ2
nI

)−1
yT (4)

S = KPP − KPT

(

KTT + σ2
nI

)−1
KTP (5)

where,KTT = [k(xi, xj)]i,j is the t × t matrix of the covariances between the training pointsxT , KPP is the
p × p matrix of the covariances between the prediction pointsxP , andKPT is the p × t matrix of covariances
betweenxP andxT with KTP as its transpose. The mean of the posterior distribution,m, is taken to be the predicted
values of the underlying function at thexP . This estimate is a function of the (i) measurement uncertainty, (ii) the
separation between the training points, (iii) the measuredvalue of the underlying function at the training points, and
(iv) separation between the training points and the prediction points. By collecting all the terms that do not depend on
the prediction points,xP , Eq. (4) may be rewritten as follows:

m = KPT wT (6)

wherewT =
(

KTT + σ2
nI

)−1
yT . The function value predicted by GPR at a test location is thus a weighted sum of

the correlation between the test location and each of the training points.
If a computer code is used to evaluatefT oryT , then typically, there is no measurement noise andσn may be set to

zero. Under such circumstances, the GPR model is interpolative, i.e.,m(xT ) = fT andS(xT ) = 0. However, in this
paper,σn value is set to a very small value, so as to stabilize the inversion of the covariance matrix without affecting
the value of the prediction numerically.

2.1.1 GP Prediction Variance and Variance-Based Training Point Selection

The covariance of the predicted values,S, represents the uncertainty in prediction [Eq. (5)]. As with prediction mean,
for a given model (Θ fixed), the uncertainty in prediction is a function of the measurement noise, and the separation
between the training points and the separation between the prediction points and the training points. This posterior
uncertainty is always less than the prior uncertaintyKPP ; however, unlike the prediction mean, it is independent
of the measured values of the function at any of the training points,yT . When the measurements are taken from an
unknown GP, the influence ofyT is implied indirectly in the estimation ofΘ of the unknown GP.

The predicted variance of a 1D GP withΘ = {1, 1, 10−6} and sampled at nine uniformly distributed points in
[−4, 4] is shown in Fig. 1(a). The predicted variance is a function ofthe distance between a prediction point and the
training points. The prediction variance has local peaks atthe midpoint between two neighboring data points. This
shape remains the same throughout the domain; however for points near the boundaries of the domain, the value of
the variance increases. This is due to the asymmetry in the number of data points and the effect of length scale. At
length scalel = 1, prediction variance at points around the center of the domain is influenced by a greater number
of data points than the points near the boundary of the domain. As a consequence, in Eq. (5) the correction to prior
variance is larger for test points near the center than at those near the boundaries. This effect is exaggerated for a
model with a larger length scale,l = 2 [see Fig. 1(c)]. For a model with smaller length scale,l = 0.45, the effect of
neighboring data points is more localized and therefore, the shape of variance curve is uniform throughout the domain
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FIG. 1: Predicted variance of Gaussian process regression. For thesame data locations (squares), prediction variances
of three models, with different values of the length-scale parameters are shown. (a)Θ = {1, 1, 10−6}, (b) Θ =
{0.45, 1, 10−6}, and (c)Θ = {2, 1, 10−6}.

[see Fig. 1(b)]. The behavior in higher dimensions is similar to the 1D case, except that the symmetry is with respect
to the value of the length scale in each dimension.

An important consequence of this behavior is that for a givenΘ, prediction variance may be minimized only by
equidistribution of sample points in the domain. Thus, algorithms for VMS designs, tend to generate sample distri-
butions, which are relatively uniform and have a relativelyhigh concentration of sample points along the boundaries
of the domain. The behavior in higher dimensions is similar to the 1D case, except that the equidistribution is with
respect to the value of the length scale in each dimension.

A simple numerical experiment illustrates this point. Suppose,Ω = [0, 1]2. We consider a uniform grid of51 ×
51 = 2601 prediction points,XP ∈ Ω. We assume that the underlying function is a GP with known parameters,Θ,
and seek the locations of then training points,XT ∈ Ω, that minimize the total prediction variance,T = trace(S),
whereS is a51 × 51 covariance matrix defined according to Eq. (5).

We first consider the anisotropic caseΘ = {0.1, 0.5, 1, 1e− 6}. The sample distribution forn = 16 andn = 32
are shown in Figs. 2(a) and 2(b), respectively. Forn = 16, the sample distribution is aligned in two rows. In each
row, the average separation between neighboring points is0.1311 and the average separation between the two rows is
0.5383. The total prediction variance is156.312. Doubling the number of training points ton = 32, reduces the total
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FIG. 2: Prediction variance minimizing sample distribution: 2D anisotropic GP with knownΘ = {0.1, 0.5, 1, 10−6}.
(a)n = 16 and (b)n = 32.
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prediction variance to13.8549 and distributes the samples in three rows. In each row, the average separation between
neighboring points is0.0997 and the average separation between the rows is0.3714.

Figure 3(a) shows the sample distribution for the isotropiccase. The Voronoi tesselation of the domain with the
sample locations as Voronoi centers is also shown in Fig. 3(a) to reinforce the equipartition of the domain by the
sample locations. Cells in the tesselation are approximately congruent to each other.

The above examples illustrate that the optimal sample distribution that minimizes the total prediction variance over
the domain is such that the average distance of the training points to the prediction points is minimized. Furthermore,
when the prediction points are uniformly distributed over the domain, this results in equidistribution (with respect to
the distance metric defined in the process covariance) of thetraining points in the domain.

In the modeling of simulation codes, model parameters are not known a priori and must be estimated based on
the training data. For such cases, starting with an initial sample distribution, a sequentialized version of the above
algorithm may be considered [28, 29]. In each iteration, themodel parameters are estimated using existing training
data. In turn, a new training point is added at the location ofthe highest prediction variance indicated by the model.
In subsequent sections of this paper, this sequentialized algorithm is referred to as VMS and serves as the benchmark
for comparisons.

3. SPARSE GAUSSIAN PROCESS REGRESSION

Driven by computational concerns, several approximationsto GPR models known as sparse Gaussian process re-
gression (SGPR) models, have been developed [30–34]. Quiñonero-Candela and Rasmussen [35] has shown that the
common idea behind these approximations is to induce a relation between the prediction variablesfP and the training
variables,fT , through another subset of inducing variables,fU , defined at locations,xU ∈ Ω.

The inducing variables,fU , follow the same distribution asfT andfP , i.e.,fU ∼ N (0,KUU ), and P(fT , fP ) may
be computed by marginalizing the joint prior of all three variable sets:

P(fT , fP ) =

∫

P(fT , fP , fU )dfU (7)

As a consequence of marginalization, the actual values of the inducing variables,fU , do not influence the inference.
However, as discussed subsequently, the locations of the inducing variables,xU , are critical to inducing a relationship
between the prediction and training variables. Following the terminology of Quiñonero-Candela and Rasmussen [35],
these locations are calledinducing inputsin this paper.
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FIG. 3: Prediction variance minimizing sample distribution: 2D Isotropic GP with knownΘ = {0.25, 0.25, 1, 10−6}.
(a)n = 16 and (b)n = 32.
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Sparse approximations to GP are based on two key assumptions. The first assumption, which leads to approxima-
tion of the exact joint prior above, is the conditional independence betweenfT andfP , givenfU . Equation (7) may
then be written as

P(fT , fP ) '
∫

P(fT |fU )P(fP |fU )P(fU )dfU (8)

Under this assumption, interaction betweenfT andfP is induced throughfU . This is in contrast to GPR, where the
relation betweenfP andfT is direct because the joint posteriorp(fT , fP |yT ) is described in terms of the exact joint
prior p(fT , fP ).

In addition, formulation of SGP involves assumptions regarding the approximations of conditionals,fP |fU and
fT |fU . Several different approximations have been suggested, leading to a different joint prior betweenfT andfP and,
consequently ,to different approximate posterior distributions [30, 32, 35]. In this paper, we use the fully independent
training conditional (FITC) approximation described in [34].

As a reference, withQA,B , KAUK−1
UUKUB , prediction based on this approximation is provided as follows:

m = QPT

(

QTT + diag[KTT − QTT + σ2
nI]

)−1
yT (9)

S = KPP − QPT

(

QTT + diag[KTT − QTT + σ2
nI]

)−1
QTP (10)

where diag(·) is a diagonal matrix containing only the diagonal elements of the argument matrix.
By collecting all the terms that do not contain the prediction points,xP , the mean predicted value may be written

in the form
m = KPUwU (11)

where
wU = K−1

UUKUT

(

QTT + diag[KTT − QTT + σ2
nI]

)−1
yT (12)

Thus, unlike in GPR [Eq (6)], in SGP, predicted values are a weighted sum of the correlation between the prediction
location(s) and the inducing inputs. The weighting itself is a function of the correlation between the inducing inputs,
the training locations and the measurement noise. As a consequence of inducing the relation betweenfP and fT
through variablesfU , the SGP model is, in general, not interpolative and is rather an approximation.

As in GP, the prediction variance in SGP is also a function of the distance; however, the variance is minimum at
the location of the inducing inputs, rather than the training points.

Training in SGP involves estimation ofxU , apart fromΘ and may, in general, involve selecting these parameters
via maximization of the marginal likelihood

log[p(yT |xU )] = −1

2
log|QTT + Λ| − 1

2
yT (QTT + Λ)−1

y − n

2
log2π (13)

whereΛ = diag[KTT − QTT ] + σ2
nI. In this paper, for reasons that become apparent in subsequent discussion, the

xU are specified independently of the parametersΘ.
The following notation will be used henceforth:GP (x;xT , Θ) refers to a GP model in which parametersΘ are

learned based on information in training data atxT . The corresponding SGP model based on inducing points,xU is
represented asSGP (x;xT ,xU , Θ).

4. HIERARCHICAL ERROR DECOMPOSITION USING SGP

The principal objective of this paper is to develop an error-based sequential modeling and training point selection
algorithm for an a priori unknown function. The proposed solution, BMS (presented in Section 4), relies on hierar-
chical decomposition of the approximation error space. Toward this end, in this section we begin by introducing the
hierarchical Gaussian processes (HGPs), which generate a representation of a given function through a hierarchical
decomposition of the approximation error using a multilayered hierarchy of sparse Gaussian processes. Subsequently,
in Section 4.1, such hierarchical decompositions are sequentialized and employed toward the reconstruction of an un-
known function. In this section, the proposed hierarchicaldecomposition of the approximation error space, synthesis
analysis of HGP models, and their variation localizing properties are discussed.
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4.1 Hierarchical Decomposition

The first step in the development of HGP models is to consider an M -level hierarchical decomposition of an a priori
known functionf : Ω → <, Ω ∈ <D, which is represented by its dense sampling:{xT , yT = f(xT )}. With
k = {1, 2, . . . , M} as an index into theM -level hierarchy, such a decomposition may be represented as

e1 = f
k = 1 e1 = ê1 + e2

k = 2 e2 = ê2 + e3

...
...

k = M eM = êM + eM+1

(14)

The first layer of the model approximatese1 = f with ê1 ande2 = e1 − ê1 is the corresponding approximation
error. Similarly, in subsequent layers,êk is thekth layer approximation to the error,ek, in the previous layer, and
ek+1 = ek − êk is the corresponding approximation error of the current layer.

At thekth level of hierarchy, the error at pointx ∈ Ω, ek(x), is approximated by a SGP network ofNk inducing
inputs,xk

U , which are centered at locationsCk = {ck,j ∈ Ω, j = 1, 2, . . .Nk} with weightswk
U , with parametersΘk,

estimated using data{xT , yT = f(xT )}:

êk(x) = SGP(x;xT ,xk
U , Θk) = Kk

PUwk
U (15)

whereKk
PU is the correlation matrix withNk columns, which span the subspace represented by thekth layer approx-

imation. Note that the parameters of each layer are based on the estimates of approximation error computed at the
location of the training points,xT , and is therefore same for all the layers.

From Eq. (14), it follows that

f =
M
∑

k=1

êk + eM+1 , f̂M + eM+1 (16)

wheref̂M is defined as theM -level approximation to functionf , and the corresponding error due toM -level approxi-
mation,eM+1 = f − f̂M . In general,ek is the approximation error due to the(k−1)-level hierarchical approximation
of f :

ek = f − f̂k−1 = f −
k−1
∑

j=1

êj (17)

Thus, each layerk approximates the error space due to the(k − 1)-th level approximation of the functionf . Further-
more, using thekth layer approximation model in Eq. (15), theM -level approximation may be written as

f̂M (x) =

M
∑

k=1

SGP(x; ek,xT ,xk
U , Θk) =

M
∑

k=1

Kk
PUwk

U (18)

4.2 HGP Parameters

Equation (18) describes the reconstruction of the given function in terms of the set of inducing inputs,C = {Ck}M
k=1,

and the set of covariance function parameters,Θ = [Θ1 | Θ2 | Θ2 · · ·ΘM ]T . In what follows, the elements ofC are
referred to as the structural parameters and the elements ofΘ are referred to as the approximation parameters. The
quality of approximation represented by the reconstruction in Eq. (18) depends on the choice of the approximation
and structural parameters.

In general, given the number of inducing inputs,Nk, the optimal structural and approximation parameters may
be simultaneously estimated as in [34]. However, as the number of inducing inputs increases, the complexity of the
parameter identification problem increases because this optimization is with respect to(Nk + 1)D + 1 variables.
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Instead, in this work, the structural parameters are set according to an ordering imposed by a hierarchical analysis
grid defined on the problem domain,Ω. Then, given a set of structural parameters, the optimalD + 1 approximation
parameters are subsequently identified. Specifically, thekth layer approximation parameters,Θk are chosen so as to
minimize

J [Θk] =
∑

x∈Xs

[

ek(x) − êk(x)
]2

=
(

ek − Kk
PUwk

U

)T(

ek − Kk
PUwk

U

)

(19)

whereek = [ek(x1), ek(x2), . . . , ek(xN )]T = ek(Xs) represents a sampling ofek andwk
U is defined as in Eq. (12).

This reduction in computational complexity comes at the price of having to maintain the analysis grid and the
reduced approximation power due to the discretization of the allowable structural parameter values. As is discussed
subsequently, this setting of structural parameters according to the geometry of the problem domain and independent
of the parameters yields a localization of the variation in the underlying function.

4.3 Analysis Grid

The analysis grid employed in this paper is a ternary tree in which each layer is a dyadic partition of the previous layer.
The intersections of such partitions form the nodes of the tree. The association to HGP is established by an ordered
assignment of each layer of the tree to a corresponding layerin the HGP. The number and position of nodes at a given
layer in the tree correspondingly determine the number of inducing inputs and their locations in each HGP layer. This
tree achieves binary partition of the domain and thus allowsa given region in the domain to be resolved in terms of
multiple inducing inputs of possibly decreasing length scale and thus represents a richer set of inducing inputs than is
provided by a simpler structure such as the binary tree.

An example of an analysis grid defined over a domainΩ = [a, b] ∈ < is shown in Fig. 4. The construction of the
grid begins with the setting ofN1, the number of nodes in layer 1, including two on the domain boundary. TheseN1

nodesC1 = {c1,j}N1

j=1 are separated from each other at a resolutionρ1 = (b− a)/(N1− 1). Thus, thejth node inC1,
c1,j , is situated at location(j − 1) ∗ ρ1 + a.

Nodes in subsequent layers are generated according to a refinement procedure that allows for akth-level nodeck,j

to be expanded in terms of its child nodes,C
(k,j)
k+1 in levelk + 1. Specifically,

C
(k,j)
k+1 =











{ck+1,2j−1, ck+1,2j} if j = 1

{ck+1,2j−2, ck+1,2j−1, ck+1,2j} if 1 < j < 2k + 1

{ck+1,2j−2, ck+1,2j−1} if j = 2k + 1

(20)

c1,1 c1,j c1,3

c2,2j−2 c2,2j−1 c2,2j

c4,2i

c3,i
c3,i+1

k

1

2

3

4

ρ1

ρ2

ρ3

ρ4

a b
a+b
2

ρ

FIG. 4: Analysis grid.
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where

ck+1,2j−2 =
1

2
(ck,j + ck,j−1) (left child)

ck+1,2j−1 = ck,j (middle child)

ck+1,2j =
1

2
(ck,j+1 + ck,j) (right child)

(21)

and,ρk+1 = (1/2)ρk.
Thus, the left and right child nodes are of the typeck,2i (i = 1, 2, . . . , 2k−1, k > 1), and have two parents:ck−1,i

andck−1,i+1, while the middle child nodesck,2j−1, k > 1, have only one parent,ck−1,j .

Finally, the(k + 1)th layer nodes are given byCk+1 =
⋃Nk

j=1 C
(k,j)
k+1 . In general, each levelk consists ofNk =

2k + 1 centers,Ck = {ck,·}, including two on the boundary of the domain. Furthermore, each node in thekth layer
is separated from its neighbor byρk = ρ1/2k−1 and located atck,j = a + ρk(j − 1), j = 1, 2, . . . , 2k + 1. Also,
because each higher layer is obtained through partition of the previous layer,C1 ⊆ C2 ⊆ · · · CM−1 ⊆ CM .

As shown in Fig. 4, level 1 corresponds to the lowest layer with each node separated byρ1 = (b − a)/2 and at
the highest level, there are2M + 1 uniformly spaced nodes separated byρk = (b− a)/2M−1. Thus,ρk progressively
decreases ask increases. This ordering onρk as a function of level of hierarchy, facilitates a coarse-to-fine decom-
position of the function such that coarse scale trends inf are modeled in the initial layers and fine scale features are
modeled in successive layers of the hierarchical model.

Extensions to higher dimensions follow directly. Iff : <D → < is a function defined in a domain of interest
[a, b]D, then starting withN1 = 3 in each dimension, each layer of the analysis grid containsNk = (2k + 1)D

centers,Ck = {ck,·}. Furthermore, each node in thekth layer is separated from its neighbor byρk = (b − a)/2k.
Note that it is not necessary to start withN1 = 3. One could start with any arbitrary value forN1 and proceed with
dyadic partition of scale and domain as stated above.

4.4 HGP Illustration

We consider aM = 6 level HGP decomposition of the following test example:

f(x) = −1 + (1 − x + 19x2)e−x2

+ 2 sin(6πx)e−(x−0.73)2 (22)

Figure 5 illustrates theM = 6 HGP decomposition. In Fig. 5, the position of theNk centersCk are indicated by
squares, while the locations of the measurements are shown as dots.

At each layer, given measurements,Sk = {{f(Xk), Xk}, Xk = Ck}, the HGP analysis consists of estimation of
the approximation parameters,Θk, of thekth layer according to Eq. (19). Thus, the weights corresponding to theNk

inducing inputs,wk,j , are estimated using theNk residues,ek available atXk locations.
As the model proceeds to higher scales, the approximation errors constitute only variations at finer scale. Thus, the

algorithm captures the trends and coarse scale features inf(x) in the initial layers, while the finer scale variations are
captured in the higher layers. In addition, progression to higher layers leades to systematic reduction in approximation
error. Table 1 lists the mean-square approximation error after each layer of approximation is added to the model.

4.5 Weight Matrix

Analysis of the weights [see Eq. (18)] corresponding to eachinducing input shows the variation sensitive modeling
implemented by HGP. Toward this end, we begin by consideringa visualization of the weights according to the
geometry of the approximation.

TABLE 1: HGP reconstruction of test function
Layer 1 2 3 4 5 6
MSE 10.035 8.4275 1.7372 0.3242 0.3559 2.6383e-6
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FIG. 5: HGP Illustration:f is the underlying function and̂fk thekth level approximation forf . The errorek = f− f̂k

is available through residualsek, indicated by vertical lines.̂ek is a SGP approximation toek with inducing inputs
Xk

U . (a)k = 1, N1 = 3, (b) k = 2, N2 = 5, (c) k = 3, N3 = 9, (d) k = 4, N4 = 17, (e)k = 5, N5 = 33, and (f)
k = 6, N6 = 65.
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The HGP coarse-to-fine decomposition of a function employs afull grid of (2M+1+M−2) inducing inputs toward
anM -level decomposition of the function. The weights corresponding to each inducing input in the hierarchical model
can be collected in a weight matrix (WM) of sizeM × 2M+1 with nonzero elements only at positions corresponding
to the position of the centers of thekth layer. An example is shown in the Fig. 6.

Such a weight matrix provides a visualization of the relative significance of the inducing inputs within the structure
of the approximation. Figure 7(a) shows the inducing input tree for the six-level HGP decomposition of the test
function (22). The corresponding weight matrix is shown in Fig. 7(b), where each rectangle is shaded according to
the magnitude of the weights,|wk,j |. As a consequence of using the squared exponential covariance functions, which
have quasi-localized support, a high value of the weightwk,j indicates high correlation between the(k − 1)th-layer
approximation error,ek, and the inducing input centered atck,j .

The correlation between the weights and the approximation error ek is further extended to the underlying function
itself. In Fig. 7, while lower layers account for coarse scale variations in the function, concentration of level six bases
centered in the interval[0, 2] correspond to fine scale variations in the function in the interval [0, 2]. This illustrates
a localization of the functionf . However, because HGP hierarchy is based on the decomposition of the error space,
the layer at which fine scale variations of a function are characterized depends on the quality of the approximation in
the previous layers rather than the function itself. Thus, the HGP does not directly characterize the variation scale in
inherent in the function. Instead, the HGP scale characterization is apparent and depends on the approximation in the
lower layers.
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FIG. 7: HGP decomposition of the test example. (a) HGP model tree and(b) weight matrix,W.
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4.6 Variation Sensitive Modeling

A thresholding scheme similar to wavelets may be employed inHGP to yield an efficient representation of the function
with a drastically reduced inducing input set. Specifically, given anM -level HGP decomposition of a functionf , a
compressed representation off may be generated by a thresholding operation [36]:

f̃M =

M
∑

k=1

Nk
∑

j=1

KPUT (wk,j) (23)

whereθT (·) is the thresholding function

T (x) =

{

x if |x| ≥ T
0 if |x| < T

(24)

Figure 8 shows the result of a thresholded reconstruction ofthe test function. The thresholded weight matrix,Wt,
is shown in Fig. 8(b). Figure 8(d) identifies the nodes that were excluded from the reduced representation. Although a
HGP construction has2M+1+(M−2) = 132 inducing inputs, the thresholded representation uses onlyR = 76 nodes
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FIG. 8: HGP compression. (a) Reduced model tree, (b) thresholded weight matrix,Wt, (c) reconstruction, and (d)
W − Wt.
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to generate a representation of similar quality. The reduced model tree is shown in Fig. 8(a), and the corresponding
reconstruction based on the thresholded tree is shown in Fig. 8(d).

Although the MSE in HGP reconstruction is2.6383 × 10−6, the MSE due to reconstruction from reduced node
set is0.0011. As a measure of the significance of the retained nodes,

∑|Wt|/
∑|W| = 0.98. In the addition, as seen

in Fig. 8(d), a significant number of the nodes belonging to the k = 6, that were pruned out are located outside the
approximate interval[−1, 2], which is the interval in which the functionf(x) displays its highest variation. On the
other hand, Fig. 8(b) shows the concentration of higher layer nodes, with significant weights, within this interval. This
example suggests a variation sensitive model, in which the density and the scale of inducing inputs must correspond
to the localization of the features contained in the underlying function.

5. BIAS MINIMIZING SAMPLING

The HGP algorithm presented in Section 4 allows for the construction of aM -level hierarchical representation of
an a priori known function. This representation, which consists of

(

2M+1 + M − 2
)

inducing inputs, may then be
compressed to produce a sparse representation by retainingonly those inducing inputs with significant contributions
to the overall representation. The resulting compressed model, apart from providing an efficient representation in
terms of the approximation error, provides a variation-sensitive model in which the location of the inducing inputs
correspond to the location of variation in the underlying function.

However, in the construction of surrogate models for computer simulation, the underlying function is a priori
unknown. The BMS method proposed in this section implementsa sequential algorithm, which traverses the analysis
grid sequentially and arrives at a sparse representation ofan a priori unknown function through discovery of significant
inputs in the grid. Furthermore, by linking sampling resolution and localization to nodes on the grid, BMS achieves
sequential sensitive modeling and, as a consequence, sequential variation sensitive sample distribution.

As in HGP, BMS implements an hierarchical error decomposition. Furthermore, in BMS the nodes of the analysis
grid correspond to both the location of the inducing inputs and the location of the training points. The algorithm starts
with an initial coarse sample distribution and an initial model consisting of inputs at a coarse scale. It then implements
an iterative feedback procedure that systematically selects nodes on the grid for sample refinement and subsequent
model update.

The BMS algorithm implements an adaptive procedure for the refinement of an existing model and the correspond-
ing sample distribution. In each iteration, the selection of a node for refinement and modeling is based on criteria that
use information contained in the residuals, which represent a sampling of the true approximation error in the current
function estimate.

5.1 Steps of the BMS Algorithm

A procedural outline of the algorithm is presented as follows:

1. select node from the set of allowable candidate nodes.

2. sample function at child nodes of the selected node.

3. add the input of the selected node to the model.

4. add children of the modeled node to the set of allowable candidate nodes.

5. repeat till the maximum number of samples allowed are taken.

Procedurally, steps 1–3 of the BMS algorithm outline implement a select-refine-model cycle. The trajectory of the
sequential BMS algorithm through the analysis grid is governed by two key ideas:

1. In each iteration, the set of allowable candidate nodes,CA, consists of all the unmodeled children of previously
modeled nodes. This set represents the inducing inputs, that are allowed to enter the model in the next iteration.
From this set of allowable candidate nodes, a subset of nodesis selected, according to the selection criteria
(Section 5.4) for subsequent modeling.
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2. A selected node is refined by sampling at its child node locations before it is modeled.

These ideas are illustrated in Fig. 9. In Fig. 9(a), nodesC1 correspond to previously modeled that which correspond
to f̂1. NodesC2, which form the set of all unmodeled children of the previously modeled nodes, form the set of
allowable candidate nodesCA, for the next iteration.

Suppose nodec2,2 is selected for modeling in the next iteration (i.e., an inducing input centered at the location
of the node is to be added to the model). The selected nodeC∗

i = c2,2 is first refined by taking measurements at the
locations of the child nodesCR = {c3,2, c3,3, c3,4}, and is then introduced into the model. Modeling of the selected
nodec2,2 introduces the child nodes into the set of allowable nodes for the next iteration. Thus, as seen in Fig. 9(b),
the set of allowable candidate nodes isCA = (CA \ C∗

i ) ∪ CR = {C1 \ c2,2} ∪ {c3,2, c3,3, c3,4}.
From the modeling perspective, the above procedure has the following two important consequences:

1. Allowing only unmodeled children of previously modeled nodes to enter the model ensures that each inducing
input enters the model only once. This ensures that the iterative algorithm does not get stuck in a recursive loop
in searching through the grid.

2. Because new inputs can only enter the pool of allowable candidate nodes through refinement of parent nodes,
no child node is added to the model before at least one of its parent nodes is modeled. This imposes intergener-
ational continuity on the inputs and thus ensures that the model descends analysis grid in order.

The location of the unmodeled children of previously modeled nodes corresponds to all the previously sampled
locations. Thus, in each iteration, all previously sampledlocations are eligible for refinement. However, the resolution
of sample refinement is limited by the corresponding resolution of allowable nodes. As a consequence of intergenera-
tional continuity of inputs, a region in the domain is sampled at a given resolutionρk, only after its neighborhood has
been sampled at resolutionρk−1.

As a consequence of the grid-based regime, if a child node of aselected node is already modeled or sampled, it is
not sampled again. Also, if a node is selected after both its neighboring nodesc·,j−1 andc·,j+1 have been selected,
then no new samples need be taken. In such an iteration, only an inducing input need be introduced into the model
and only the input corresponding to the middle child is newlyadded to the set of allowable nodes because the other
child nodes would have already been introduced by the neighboring nodes.

5.2 Maximum Sampling Resolution

The procedure described above allows for traversal of the analysis grid down to an arbitrary grid depth with arbitrarily
high sampling resolution via refinement. However, in practice, the maximum number of samples allowed and the
maximum sampling resolution are typically limited.

c1,1 c1,2 c1,3

c2,1 c2,2 c2,3 c2,4 c2,5

(a)

c1,1 c1,2 c1,3

c2,1

c2,2

c2,3 c2,4 c2,5

c3,2 c3,3 c3,4

(b)

FIG. 9: Grid traversal in BMS algorithm. (a) Iteration 1 and (b) iteration 2.
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In this paper, the maximum allowable sampling rate is assumed to correspond to the highest resolution of the grid
and the maximum sample size,Nmax, is assumed to be less than2M , whereM is the highest grid level. Also, the
M th-level nodes are modeled without further refinement and therefore do not spawn new child nodes.

5.3 Modeling

In BMS, because the refinement of a selected nodeC∗

i precedes its modeling, the number of samples (N ) is always
more than the number of modeled nodes (Nk) and the resulting linear system represents an approximation rather
than interpolation. In order to start the algorithm, the BMSis initialized by selecting all layer 1 nodes,C1. Thus,
C∗

1 = C1. Refinement of these nodes results in samplesf(X1), at the location of all the layer 2 nodes,CR = C2.
Thus,X1 = C2, which corresponds to the location of levelk = 2 nodes on the grid. The BMS algorithm is presented
as follows:

BMS Algorithm

1. i← 1

2. setNmax

3. initialize: ei ← f , f̂i−1 ← 0, Xi−1 ← ∅

4. bootstrap: CA ← C1, C∗

i ← C1

5. CR ← REFINE(C∗

i )
6. Xi ← Xi−1 ∪ CR

7a. estimate: Θ̂i = minJ [Θi]

7b. synthesis: êi ← SGP
(

x; CR, C∗

i , Θ̂i

)

8. if |Xi| ≥ Nmax terminate.
9. CA ← (CA \ C∗

i ) ∪ CR

10. C∗

i+1 ← C∗

i ∪ SELECT(CA, ei+1(CA))

11. i← i + 1

12. goto 5

whereC∗

i is a node in the set of allowable candidate nodesCA, which is selected for refinement and subsequent
modeling in theith iteration. This selection is based on a criterion,SELECT, which uses the residues at location of
nodes inCA to identify the selected node (see Section 5.4). Refinement of the selected node is implemented by the
REFINE(C∗

i ) procedure, which identifies the location of the child nodesof the selected nodes (Section 4.3). After the
child nodes have been identified, the underlying function issampled at the location of child nodes and, subsequently,
the child nodes are added to the set of allowable candidate nodes for further possible refinement.

5.4 Selection Criteria

In BMS, before a selected node is modeled, it is refined by sampling at the location of its child nodes. As a conse-
quence, information about the error in theith-level approximation̂fi is available as residuesei+1(Xi) = f(Xi) −
f̂i(Xi) at all the previously sampled locations,Xi. These correspond to the location of all nodes in the set of allowable
candidate nodesCA. In BMS algorithm, the information contained in these residues is directly employed in each iter-
ation to select a node,c∗i+1 from the setCA such that the resulting error in approximation is systematically reduced.
Specifically, the node corresponding to the greatest residue is selected from the set of allowable candidate nodes for
modeling in the next iteration

c∗i+1 = arg max
cλ∈CA

(|ei+1(cλ)|) (25)

5.5 BMS Illustration

We revert to the test function in Eq. (22) to illustrate the BMS algorithm. A maximum sampling resolution of(b−a)/26

is assumed. Thus,M = 6 and the maximum number of samples is26 + 1 = 65.

International Journal for Uncertainty Quantification



Bias Minimization in Gaussian Process Surrogate Modeling 337

The first 20 inducing inputs selected by BMS are shown in Fig. 10(a). The correspondence between the inducing
input distribution and variation in the underlying function is noted.

Because the locations of unmodeled children (leaf nodes in the tree) of previously modeled nodes are the training
sample locations, the correspondence of inducing input distribution to variation extends to training sample distribution
[Fig. 10(b)]. In contrast, the training sample distribution due to VMS algorithm, shown in Fig. 10(b), is relatively
uniformly distributed. As a consequence, as seen in Fig. 10(b), the approximation due to BMS algorithm captures
the variability of the test function in[−1, 2] whereas the approximation due to VMS does not. In addition, due to the
behavior discussed previously, VMS expends more samples inthe domain boundaries, where there is no variation in
the underlying function.

In order to characterize the variation-sensitive trainingsample distribution generated by BMS, we consider the
effect of translation of the underlying function within thedomain. Toward this end, we consider the sample distri-
butions generated for test function of the typef(x − t), wheret ∈ Ω is the translation parameter. Figure 11 shows
the training-point distributions for various translations of the test function (22). Each row shows the distribution of
the first 30 training points generated whenf(x) is translated byt. As the function,f(x) moves from –3 to 3, the
training-point distribution shifts correspondingly; hence, the density of the training points along the diagonal across
the image is higher. On the basis of this experiment, for eacht, the size of the interval[t− 1, t + 2] (in Fig. 10(b), this
interval corresponds to [–1,2]) represents 36.18% of the domainΩ and contains 59.92% of the samples, on average.
This experiment illustrates that in addition to localization of the features in the underlying function, BMS training-
point distributions achieve variation sensitivity because the density of the training points in feature regions is higher
when compared to other regions of the domain.

In addition to the 1D test function above, the performance ofthe BMS algorithm is evaluated against the following
2D functions:

f1(x, y) = 2e−5(0.5(x−1.2)2+2y2) (26)

f2(x, y) = peaks(x, y) (27)

f3(x, y) = f1(x, y) + erf(x − .3) + 2erf(y − 2.21) (28)

f4(x, y) = f2(x, y) + erf(x − .3) + erf(y − 2.21) (29)
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FIG. 10: Comparison of BMS and VMS for the test example (22): (a) Showsthe model tree and the first 20 modeled
nodes, which correspond to the location of inducing inputs,C∗

i in BMS and (b) the corresponding 35 BMS sample
locations,Xi are superimposed with the test function and the corresponding training points selected by VMS. Note
the spatial localization of the variation in the underlyingfunction by both the inducing inputs and sample locations in
BMS.
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FIG. 11: Distribution of training points generated by BMS for various translations of the test function in Eq.(22).

wherepeaks is a MATLAB function:

f2(x, y) = 3(1 − x)2e−x2
−(y+1)2 − 10

(x

5
− x3 − y5

)

e−x2
−y2 − 1

3
e−(x+1)2−y2

(30)

and

erf(x) =
2√
π

∫ x

0

e−t2dt (31)

These functions are modeled at a maximum grid level,M = 6, and, thus, the maximum number of possible
training-point locations is 4225. In subsequent comparisons, both BMS and VMS select locations from this set of
possible training point locations and the difference between the predicted and the true function value at unselected
locations is used a measure of model error.

The four 2D test functions and the sample distributions due to BMS and VMS are shown in Figs. 12 and 13. In
all the cases, when compared to VMS, BMS achieves higher sample rates in feature regions within the boundary.
In addition to the features within the boundary, functionsf3 andf4 have variations in the interval [–2,2] along the
four boundaries. In the case off3, BMS accounts for this variation on three dimensions; in addition, the sample
density in the interior feature is now sparser. In the case off4, at 150 samples, BMS has not accounted for variations
along the boundary at all. This behavior is due to the sequential nature of the algorithm and the fact that the node
selection is based only on the residues and not the error estimate, which is presented in Section 5.6. Thus, through
sequential search and modeling, BMS achieves a training sample distribution that is representative of the features of
the underlying function.

5.6 Error Estimate

The internal hierarchical model,̂fk, employed by the algorithm represents a mechanism with which information
content in the sample distribution may be extracted. In addition, a sampling of the corresponding approximation error
ek+1 = f − f̂k is available at the location of the unmodeled nodes,CA. In each iteration of BMS, the information
contained in these residues can be used to obtain an estimateof the true error,ek+1. In addition tof̂k, such an estimate
may then be employed to characterize the quality of approximation to the underlying function,fk, implemented by
BMS.

One such estimate of the error,ek+1, is obtained by employing the bases in the set of allowable candidate nodes,
CA, to model the residue

êk+1 = GP(x, CA, Θ) (32)
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FIG. 12: Comparison of BMS and VMS for 2D test examples. (a)f1, (b) f3, (c) f1 BMS samples, (d)f3 BMS
samples, (e)f1 VMS samples, and (f)f3 VMS samples.

When the sample density is low, such an estimate is expected to be biased. However, as the sample density increases, a
richer set of possible inducing inputs become available inCA, and the fidelity of the estimate to the true approximation
error improves. The estimate described here is intended to provide a practical feedback about the quality of the function
estimatef̂k, and may be used as a qualitative description of the sequential search implemented by BMS.
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FIG. 13: Comparison of BMS and VMS for 2D test examples. (a)f2, (b) f4, (c) f2 BMS samples, (d)f4 BMS
samples, (e)f2 VMS samples, and (f)f4 VMS samples.

5.7 Error Rate Comparison

In Fig. 14, the BMS reconstruction error as a function of the number of samples is shown for the 1D test function. Also
shown is the reconstruction error due to the VMS algorithm. Figure 15 shows the corresponding curves for the 2D test
functions. As is seen in those figures, BMS achieves a systematic reduction in the error through sequential addition
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FIG. 14: Log error versus number of samples for the 1D test example. (a) Max error and (b) mean error.

of localized bases with localized sampling. Furthermore, the performance of BMS is superior to the performance of
VMS.

5.8 Computational Complexity

The computational complexity in model construction for GPRis O(n3) and therefore directly related to the number
of training points,n. However, SGP reduces the computational complexity in model construction toO(nm2), where
m is the number of inducing inputs, which is always less than the number of training points. Thus, the computational
complexity of the HGP and BMS algorithms is primarily in terms of the number of inducing inputs, rather than the
number of training points and for the same number of trainingpoints the computational complexity in the construction
of BMS is lower than VMS. In terms of memory requirements, theVMS algorithm requires storage of then training
points and, in addition to the parameters of the GP, which depend on the choice of the covariance function. For the
squared exponential covariance, the number of parameters is D + 1; thus, the memory requirements of the VMS
algorithm are of the order ofO(n + D). In BMS, in addition to the location of training points, the location and
parameters corresponding to the inducing inputs must also be stored. Thus, the memory requirements are of the order
of O[n + (m + 1)D].

BMS represents a sequential algorithm in which(21 + 1)D inducing inputs are introduced in the model in the
first iteration of the algorithm. In subsequent iterations,only one inducing input is introduced into the model and the
computational complexity for these iterations is therefore linear in the number of training pointsO(n).

However, in the initial iteration, even with three inducinginputs in each dimension, the complexity grows expo-
nentially as the number of dimensions increases. This exponential growth is due to the use of the ternary tree as the
hierarchical grid. Although such a geometric grid allows for localization of the features of the underlying function, it
makes the first iteration of the BMS algorithm expensive for higher dimensional problems.

The principal advantage of VMS over BMS is in that VMS allows for the locations and number of the training
points in the first iteration to be arbitrarily selected. In future work, a similar extension of BMS may be considered
where an arbitrary subset of the first layer of the analysis grid is selected to start the algorithm.

It is however noted that in both VMS and BMS, the initial set oftraining points guides the selection of the sub-
sequent training-point locations and; therefore, affectsthe quality of the surrogate model and the number of samples
required to achieve a model of given quality. For BMS, the initial-sample distribution should provide good coverage
of the domain, which can lead to subsequent discovery of the features of the underlying function.

For efficient training of VMS, the initial sample distribution should yield a surrogate model whose estimated
length-scale parameters are appropriate to the variation in the underlying function. This requires an initial sample
distribution that has a sufficiently large number of samplesspread throughout the domain. In other words, the VMS
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FIG. 15: Log error versus number of samples for 2D test examples. (a)f1 log max error, (b)f1 log mean error, (c)f3

log max error, (d)f3 log mean error, (e)f2 log max error, (f)f2 log mean error, (g)f4 log max error, and (h)f4 log
mean error.
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algorithm aims to achieve space filling of the domain with respect to the prediction variance. Because the prediction
variance of GP depends on the distance between the training points and the prediction point, in general, the VMS
algorithm selects the farthest unsampled regions. However, as seen in Fig. 1, due to the asymmetry of training points
induced by the domain boundary, the prediction variance tends to be higher in the neighborhood of the domain bound-
ary. Consequently, if the initial training-point density is not sufficiently high, the VMS algorithm tends to choose
training points along the boundary at a higher rate than is required. As seen in Figs. 12(e), 12(f), 13(e) and 13(f), the
sample density along the boundary points is higher than it isin the interior of the domain.

Thus, both VMS and BMS require a sufficiently large number of training points in the initial set to provide
domain coverage. In high-dimensional problems such initial training points are prohibitive to obtain due to the “curse
of dimensionality”. In addition to the initial training points, the curse of dimensionality also affects the subsequent
sample distribution of VMS. Few functions exhibit consistent variation all across the domains. In higher dimensions,
due to the increase in volume of the input space, this concentration of features in the domain is more pronounced.
Thus, VMS-based surrogate models require a significantly higher number of samples spread throughout the domain to
capture the true variation in the underlying function. In contrast, localization provided by the BMS algorithm allows
for more efficient (in terms of number of samples) construction of the surrogate model even in higher dimensions.
This is illustrated by the relative performance of the VMS and BMS algorithms for the 2-D test functionf1. In general,
construction of surrogate models for high-dimensional problems involves a pronounced trade-off between the quality
of approximation and the number of training points.

5.9 Uncertainty Quantification

Computational efficiency of surrogate models allows for efficient computation of output uncertainty due to uncertain-
ties in the input variables. In this section, the two surrogate models are employed for uncertainty quantification and
the effect of the quality of the approximation implemented by the surrogate models on the quality of the uncertainty
estimates is discussed.

Toward this end, we consider the two-dimensional test function f1 [Eq. (26)]. The uncertainties in the two input
variables are assumed to be independently normally distributed:x ∼ N (1, 0.05) andy ∼ N (0, 0.05). Baseline
estimates of the statistics of the response value were computed using Monte Carlo sampling of the underlying function
with 105 samples of the two input variables. The corresponding estimates of the mean and variance of the response
variable were 1.7575 and 0.0112, respectively, and the histogram of the relative frequencies is shown in Fig. 16(a).

The VMS and BMS surrogate models, trained with various numbers of training points, were evaluated with the
same samples of the input variables used above. The histogram of the relative frequencies of the responses of the VMS
and BMS surrogate models constructed using 200 training points is shown in Figs. 16(b) and 16(b), respectively. It
is seen that the distribution of the predicted values of the surrogate model constructed with BMS is similar to the
histogram of the original function. In contrast, at 200 samples, the corresponding distribution of the surrogate model
constructed with VMS is considerably different from that ofthe original function. The estimated means and variances
of the two surrogate models constructed using a different number of training points is shown in Fig. 17. As is seen
in Fig. 17(a), for BMS the estimated mean and variance of the output converges faster than VMS to the mean and
variance computed using the original function.

The dominant feature in the functionf1 is an exponential peak that is highly localized in the domain[Fig. 12(a)].
The surrogate model constructed using VMS is dominated by samples along the boundary and in the interior of the
domain, where the function displays no variation and is therefore unable to localize the feature. The VMS surrogate
model is consistently biased over several sample rates [Fig. 15(a)]. This results in poor estimates of the uncertainties
in the response variable. On the other hand, the surrogate model constructed using the BMS algorithm localizes the
feature and thus provides consistently better estimates ofthe means and variances over several sample rates. This is
further illustrated by considering the one-dimensional test function

f5(x) = −0.4 tanh(50x), x ∈ [−4, 4] (33)

which displays a discontinuity in the functional behavior due to the sharp variation aroundx = 0 (Fig. 18). In order to
consider uncertainty propagation estimates in the region of the discontinuity, the input distribution was chosen to be
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FIG. 16: Uncertainty quantification for functionf1 using Monte Carlo simulation: Histograms of relative frequencies
of the response value of functionf1. (a)f1, (b) VMS (200 training points), and (c) BMS (200 Training points).
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of 0.05. Thick horizontal line indicates the mean and the variance estimated using the original function. (a) Mean and
(b) variance.
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x ∼ N (0.07, 0.01), which corresponds to the location of the lower bend in Fig. 18. On the basis of105 samples from
this input distribution, the corresponding estimates of mean and variance of the response variable were estimated
to be−0.3988 and2.7318 × 10−6. A performance similar to that of the original test function(f1) was observed:
BMS provides better localization and approximation quality (Fig. 19). In addition, the uncertainty estimates of BMS
converged faster than those due to VMS (Fig. 20).

6. CONCLUSION

In the approximation of high-fidelity computer simulationsusing surrogate models, the underlying function is invari-
ably undersampled because factors such as the size of the domain and the number of input variables limit the sample
budget. Thus, perfect reconstruction of the underlying function is not possible. Instead, the underlying function must
be reconstructed as an approximation using the limited dataavailable.

The principal motivation behind this work was to seek alternatives to VMS designs for the construction of the
widely used GP surrogate models. Our preliminary studies revealed that VMS designs are geared toward improving
the statistical properties of the approximation. Althoughsuch designs are desirable, they are not directly related to
reducing the bias in approximation with respect to the underlying function. Our primarily goal was to investigate the
possibility of generating bias-minimizing designs and to understand the differences between bias-minimizing designs
and variance-minimizing designs.
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FIG. 19: Log error versus number of samples for functionf5. (a)f5 log max error and (b)f5 log mean error.
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FIG. 20: Uncertainty quantification for functionf5: Estimated mean and variances at test point0.07 with variance of
0.01. Thick horizontal line indicates the mean and the variance estimated using the original function. (a) Mean and
(b) variance.

Because the underlying function is not known, the optimaln-sample distribution cannot be determined a priori;
instead, a suboptimal sequential estimate must be sought. Toward this end, we first developed the HGP algorithm,
which achieves hierarchical decomposition of a known function on a tree and suggests the possibility of a variation-
sensitive modeling and compressed representation. The BMSalgorithm was then developed as a serialization of the
HGP algorithm that achieves variation-sensitive modelingthrough sequential discovery of significant nodes in the tree
and in turn achieves variation-sensitive sample distribution through coarse-to-fine sample refinement.

Using numerical examples, it is shown that using such sampledistributions, critical features of the underlying
function may be adequately resolved with greater sampling economy than previous methods. Thus, for the same
number of samples, such distributions result in higher quality reconstructions when compared to previous meth-
ods.

In BMS, the location of the inducing inputs is restricted to the grid. In each iteration, the node with the largest error
is selected as the inducing input to be introduced into the model. Restricting the location of inducing inputs provides a
localization of the features in the underlying function. With the location of the inducing input fixed, the fidelity of the
approximation is controlled by selecting the length-scaleand variance parameters that result in the largest reduction
of the approximation error.

Typically, the parameters of both GP and SGP are identified using MLE. However, in HGP and BMS algorithms
the parameters of the approximating function are identifiedusing a least-squares criterion [Eq. (19)] so as to directly
reduce the approximation error.

The proposed framework is not unique to GPs, and any regression model that uses bases with local or quazi-local
support may be employed in this framework (e.g., RBF [37]). However, the location of the training points depends
on the class of approximations considered and, therefore, even within the overall framework of GPs, the best training
points for the squared exponential covariance function will be different from those for the Matern covariance functions.

The proposed method is based on the hierarchical approximation of the fitting error of a surrogate model in which
only the mean prediction is considered. A more robust inference would employ the entire predictive distribution and
is part of the further work. Considering uncertainties at each level of the approximation will also lead to probabilistic
node selection criteria, which considers both the mean and variance in the residues instead of the current deterministic
criteria, which only considers the mean. Such a probabilistic node selection is expected to provide a balance between
bias and variance and is likely to yield a “breadth-first” traversal of the grid rather than the “depth-first” traversal
implemented by the current deterministic criteria.
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One possible way to handle multivariate responses is to construct individual SGPs for each response. When com-
bined with an appropriate metric that combines the errors ineach response, the BMS algorithm may be extended
for multivariate responses and we obtain one sample distribution for all the dimensions. However, it is noted that for
highly multivariate responses, construction of individual surrogate models is computationally expensive. In addition, a
fundamental issue with modeling each output independentlyis the correlation between the output variables. Although
functional or statistical correlations across the individual responses may be exploited to “compress” the dimension of
the output space, such compressions may not always be possible.

In addition to the issues concerning the modeling of the multiple outputs and the estimation of the surrogate model
parameters, a metric that combines the errors in each outputdimension must be identified. For multivariate responses,
the selection of this metric is not trivial and expected to have consequences on the sample distribution and quality of
the reconstruction. For this reason, the selection procedure could involve a multiobjective optimization to account for
the errors and variations in each dimension or could consider aggregate measures, such as norms of the error residuals:
|e|1, or |e|2, wheree is a vector consisting of error residue in each dimension.

In general, training-point selection and the constructionof surrogate models for multivariate outputs is not anal-
ogous to the univariate case, and the behavior of the algorithm for the multivariate case does not immediately follow
from its behavior for the univariate case. The quality of theuncertainty estimates depends on the quality of the ap-
proximation. By considering the quality of the approximation over the entire domain, the constructed surrogate model
exhibits high fidelity to the underlying function and thus provides accurate uncertainty quantification throughout the
defined domain. In general, the domain represents the range of possible input variables. However, in certain uncer-
tainty quantification applications, only certain regions of the domain may be of interest. In such cases, it may be
more important to seek quality of approximation within the region of interest. Toward this end, the domain must be
redefined by using the distributions of the input variables to identify the regions of interest.

In addition to the results presented in this work, further evaluation of the performance of the algorithm for different
test cases is needed. In addition, further study of the properties and characteristics of the algorithm is warranted,
including extension of the algorithm to higher dimensions and the possibility of a more efficient selection criteria
apart from the greatest residue heuristic employed in this work.

ACKNOWLEDGMENTS

This study was sponsored in part by the Sandia National Laboratories (Contract No. BG-7732, Technical Monitor: Dr.
Angel Urbina) and, in part, by NASA Langley Research Center under Cooperative Agreement No. NNX08AF56A1
(Technical Monitor: Lawrence Green). The support is gratefully acknowledged.

REFERENCES

1. Liang, B. and Mahadevan, S., Error and uncertainty quantification and sensitivity analysis in mechanics computational models,
Int. J. Uncertainty Quantification, 1:147–161, 2011.

2. Sankararaman, S., Ling, Y., and Mahadevan, S., Uncertainty quantification and model validation of fatigue crack growth
prediction,Eng. Fracture Mech., 78:1487–1504, 2011.

3. Simpson, T., Poplinski, J., Koch, P., and Allen, J., Metamodels for computer-based engineering design: Survey and recom-
mendations,Eng. Comput., 17(2):129–150, 2001.

4. Xiong, Y., Chen, W., Apley, D., and Ding, X., A non-stationary covariance-based Kriging method for metamodelling in
engineering design,Int. J. Numer. Methods Eng., 71(6):733–756, 2007.

5. Rasmussen, C. and Williams, C.,Gaussian Processes for Machine Learning, Springer, New York, 2006.

6. Sacks, J., Welch, W., Mitchell, T., and Wynn, H., Design and analysis of computer experiments,Stat. Sci., 4(4):409–435, 1989.

7. Powell, M., Radial basis functions for multivariable interpolation: A review, In Algorithms for Approximation, Mason, J. C.
and Cox, M. G. (eds.), Clarendon Press, NY, pp. 143–167, 1987.

8. Ma, X. and Zabaras, N., An adaptive hierarchical sparse grid collocation algorithm for the solution of stochastic differential
equations,J. Comput. Phys., 228(8):3084–3113, 2009.

Volume 1, Number 4, 2011



348 Hombal & Mahadevan

9. Wahba, G., Spline models for observational data,CBMS-NSF Regional Conference Series in Applied Mathematics, Ohio State
University, Columbus, SIAM, Philadelphia, March 23–27, 1987.

10. Eldred, M., Webster, C., and Constantine, P., Evaluation of non-intrusive approaches for wieneraskey generalizedpolynomial
chaos,Proceedings of 10th AIAA Non-Deterministic Approaches Conference, Paper No. AIAA-2008-1892, Schaumburg, IL,
2008.

11. Ghanem, R. and Spanos, P.,Stochastic Finite Elements: A Spectral Approach, Dover, New York, 2003.

12. Kennedy, M. and O’Hagan, A., Bayesian calibration of computer models,J. R. Stat. Soc., Series B, 63(3):425–464, 2001.

13. Simpson, T., Lin, D., and Chen, W., Sampling strategies for computer experiments: design and analysis,Int. J. Reliab. Appl.,
2(3):209–240, 2001.

14. MacKay, D., Introduction to Gaussian processes,NATO ASI Series F Comput. Syst. Sci., 168:133–166, 1998.

15. Poggio, T. and Girosi, F., Networks for approximation and learning,Proc. IEEE, 78(9):1481–1497, Sep. 1990.

16. Cohn, D., Ghahramani, Z., and Jordan, M., Active learning with statistical models,CoRR, cs.AI/9603104, 1996.

17. Seo, S., Wallat, M., Graepel, T., and Obermayer, K., Gaussian process regression: Active data selection and test pointrejec-
tion, IJCNN 2000, Proceedings of IEEE-INNS-ENNS International Joint Conference on Neural Networks, 2000, 3:241–246,
2000.

18. Sung, K. and Niyogi, P., Active learning for function approximation,Proceedings of Advances in Neural Information Process-
ing Systems, MIT Press, pp. 593–600, 1995.

19. MacKay, D., Information-based objective functions foractive data selection,Neural Comput., 4(4):590–604, 1992.

20. Tong, S., Active learning: Theory and applications, PhDthesis, Stanford University, 2001.

21. Guestrin, C., Krause, A., and Singh, A., Near-optimal sensor placements in Gaussian processes,Proceedings of the 22nd
International Conference on Machine learning, ACM Press, New York, 22:265–272, 2005.

22. Krause, A. and Guestrin, C., Nonmyopic active learning of Gaussian processes: an exploration-exploitation approach, Pro-
ceedings of the 24th International Conference on Machine Learning, ACM Press, New York, pp. 449–456, 2007.

23. Gramacy, R., Lee, H., and Macready, W., Parameter space exploration with Gaussian process trees,Proceedings of the 21st
International Conference on Machine Learning, ACM Press New York, 2004.

24. Box, G., Hunter, W., and Hunter, J.,Statistics for Experimenters: An Introductory to Design Data Analysis and Model Building,
Wiley Series in Probability and Mathematical Statistics, Wiley, Hoboken, NJ, 1978.

25. Sukhatme, P. and Sukhatme, B.,Sampling Theory of Surveys with Applications, University Press, Ames, Iowa, 1970.

26. Bichon, B., Eldred, M., Swiler, L., Mahadevan, S., and McFarland, J., Efficient global reliability analysis for nonlinear implicit
performance functions,AIAA J., 46(10):2459–2468, 2008.

27. Paciorek, C., Nonstationary Gaussian processes for regression and spatial modelling, PhD thesis, Citeseer, 2003.

28. McFarland, J., Uncertainty analysis for computer simulations through validation and calibration, PhD thesis, Vanderbilt Uni-
versity, 2008.

29. Santner, T., Williams, B., and Notz, W.,The design and Analysis of Computer Experiments, Springer-Verlag, Berlin, 2003.
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