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We study a simple diffusive process in which the diffusivity is discontinuous across an interface interior to the domain.
In many situations, the location of the interface is measured at a small number of locations and these measurements
contain error. Thus the location of the interface and the solution itself are subject to uncertainty. Further, the location
of the interface may have a strong impact on the accuracy of the solution. A Monte Carlo approach is employed which
requires solving a large number of sample problems, each with a different interface location. To solve these problems,
a mixed finite element cut-cell method has been developed that does not require the mesh to conform to the interface.
An efficient adjoint-based a posteriori technique is used to estimate the error in a quantity of interest for each sample
problem. This error has a component due to the numerical approximation of the diffusive process and a component
arising from the uncertainty in the interface location. A recognition of these separate sources of error is necessary in
order to construct effective adaptivity strategies.
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1. INTRODUCTION

We address a commonly encountered situation in which a small number of experimental measurements are used to
specify a continuous input function to a complex physical problem. These experimental measurements may define
for example, the geometry, material properties, boundary conditions, or forcing functions. Based on these uncertain
data, we construct a stochastic model for the problem. A typical Monte Carlo approach assumes a probability distri-
bution for the input function and draws random samples from this distribution. The physical problem is formulated
for each random sample and solved by an appropriate numerical method, and a quantity of interest is calculated based
on the numerical solution. Ignoring inadequacies in the model itself, the so-called “modeling error,” uncertainty in
the quantity of interest arises from both the error in the input function and from the error introduced by numerical
approximation. These errors are not independent, since the numerical error will vary according to the value of the
input function. A general framework for problems of this nature, including probabilistic bounds on the approximate
cumulative distribution function for the quantity of interest is developed in [1]. It requires, however, that a distinct
adjoint problem be solved for each realization of the physical problem. The advantages to be accrued from identify-
ing the error in large computational problems into components that arise from distinct sources has been previously
recognized by several authors including [2], and more recently by [3], who use a sensitivity analysis to determine the
relative sizes of each contribution.
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Here, we consider the situation in which a well-defined deterministic physical problem exists, if only one were
able to describe it with sufficient precision. In many situations this is impractical or impossible and the problem can
only be formulated with uncertainty. We focus on situations in which the continuous input function prescribes the
differential operator defining the problem rather than simply establishing a forcing function or boundary condition.
To provide a specific context, we consider the diffusive process

−∇ · (a(x)∇p) = f, in Ω,

p = g, on∂Ω,
(1)

in a convex polyhedral domainΩ ∈ R2 with boundary∂Ω that consists of two distinct materials with different material
properties separated by a smooth interfaceΓ interior toΩ, as shown in Fig. 1. We assume that the diffusivitya(x)
changes discontinuously acrossΓ but require that the solution be continuous and have continuous normal flux across
Γ. Specifically, we assume thata is smooth in each subdomain ofΩ determined byΓ, a(x) has one-sided limits atΓ,
anda(x) is bounded below by a positive number. We also assume thatf ∈ L2(Ω) andg ∈ H1/2(∂Ω). Finally, we
assumep ∈ W = L2(Ω) andu = −a∇p ∈ V = H(div; Ω) =

(
u ∈ (L2(Ω))2 : divu ∈ L2(Ω)

)
. Such problems

arise in many contexts, e.g., flow of oil reservoir through heterogenous porous media [4–6], the elastic [7–9] and
thermal [10] properties of composite materials, and the modeling of nuclear fuel rods [11–13].

Locally conservative methods, and in particular finite volume methods, are popular in many application domains
for diffusive and transport problems. Finite volume methods are generally easier to construct and implement on regu-
larly shaped discretizations, leading to “cut-cell” techniques in which an interface cuts through the discretization cells.
In previous work [14], we developed a cut-cell finite element method, the Mixed Finite Element Cut-Cell (MFEC)
method that is equivalent to the Ghost Fluid Method in simple cases. We extend our earlier work to the situation in
which the interface location is not known everywhere, but is identified by its location at a small number of pointsP ,
and further, the locations of these few points are not known precisely. To simplify matters, we assume that the defi-
nition of a(x) is known exactly on either side of the interface, as well as other data such as the source and boundary
terms. Therefore, the only uncertainty arises due to the location of the interface. However, the location of the interface
strongly influences the accuracy of the solution. We refer to this problem as thestochastic interface problem.

We construct a penalized spline approximation [10, 15] to the interface location based onP measurements of the
interface location. We then assume a given statistical model for the (independent) errors of theseP measurements
and constructN realizations of the interface, thereby definingN “sample” problems. The error in the quantity of
interest for each sample problem is determined as the sum of the modeling and discretization errors associated with
a “nominal” problem, and the error associated with the difference between the nominal problem and the sample
problem. Both require the solution to an adjoint problem to define a generalized Green’s function. (The role of the
Green’s function in uncertainty quantification for steady-state flow in randomly heterogeneous porous media in such
problems has previously been recognized by [16, 17]. Efficient techniques for computing the Green’s function in
this context are developed in [18].) Our approach enables the dominant source of error in the quantity of interest to
be determined, which may be either the finite element discretization or the uncertainty in the measurements of the
interface location. We demonstrate the accuracy of oura posteriorierror estimate for a range of situations.

Γ

Ω

FIG. 1: Domain for the interface problems.
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In Section 2 we define the interface problem and the construction of the interface based on a small number of
experimental measurements. In Section 3 the Mixed Finite Element Cut-Cell method proposed in [14] is outlined.
The error analyses for the nominal and sample problems are performed in Section 4. Numerical results are provided
in Section 5 and our conclusions are presented in Section 6.

2. PROBLEM DESCRIPTION

We begin by stating the deterministic elliptic interface problem, in order to introduce notation used for the stochastic
interface problem. The diffusion coefficienta(x; Γ) : Ω → R depends both on the spatial variablex ∈ Ω and
implicitly on the interfaceΓ which partitions the domainΩ into two connected subregions. The interface is defined as
Γ = {x : γ(x) = 0} for some functionγ : Ω → R3. The diffusion coefficient is defined piecewise on either side of
the interface as

a(x; Γ) =

{
aN (x), γ(x) < 0,

aP (x), γ(x) > 0.
(2)

The deterministic elliptic interface problem is defined by

−∇ · (a(x)∇p) =f, x ∈ Ω \ Γ,
[p] =0, x ∈ Γ,

[a(x)∇p · n] =0, x ∈ Γ,

p =g, x ∈ ∂Ω,

(3)

for some source termf and boundary conditionsg. Note that the state variablep and the fluxa(x)∇p·n are continuous
across the interface. This assumption is made throughout the paper and so these conditions are not explicitly stated
below.

2.1 Spline Approximation to the Interface

In most situations an interface will be known only through a finite number of measurements(xi, yi)
P
i=1 located along

the interface. Furthermore, these measurements will be subject to error. To construct a spline interpolation we first
introduce an approximate arclength parametersi, where

s1 = 0, si = si−1 +
√
(xi − xi−1)2 + (yi − yi−1)2 , i = 2, . . . , P,

to give(x(si), y(si))Pi=1. We use penalized splines (P-splines) [19] to approximate the functionsx(s) andy(s) which
define the interface.

The penalized spline method uses a model functiony = m(x;β). The parametersβ ∈ RM are determined such
that they minimize a least-squares error term and a penalized regularity term given by

P∑
i=1

[yi −m(xi;β)]
2 + λD(m(x;β)). (4)

The regularity functionD can have many different forms, all of which aim to smooth the spline. The smoothing
parameterλ determines the relative weighting of the least-squares error and the regularization terms. Here

m(x;β) = β0 + β1x+ β2x
2 + β3x

3 +

K∑
k=1

β3+k(x− κk)3+ , (5)

whereK is the number of knots in the spline,κk are the knot locations andD penalizes the parametersβ3+k, k =
1, . . . ,K. We therefore seek to minimize the function

P∑
i=1

[yi −m(xi;β)]
2 + λ

K∑
k=1

β2
3+k . (6)
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The smoothing parameterλ is selected so as to minimize the Generalized Cross Validation (GCV) statistic, defined by

GCV(λ) =
P−1

∑P
i=1[yi −m(xi; β̂(λ))]

2

[1− P−1tr S(λ)]2
, (7)

whereS(λ) = X(XTX + λD)−1XT ∈ RP×P , X ∈ RP is the vector with elementsxi, i = 1, . . . , P , andβ̂(λ) is
the vector of coefficients which minimize (6) for a particularλ. Let λ̂ be the optimal smoothing parameter such that
the GCV is minimized. We approximatêλ by establishing a grid of 100 values ofλ from 10−12 to 1012, and choosing
the value of lambda from that grid which yields the minimum value of the GCV [19].

The knotsκk were uniformly spaced throughout the domain. We examined the number of changes in concavity in
order to determine the number of knots need to reproduce the required shape. As a rule of thumb we chose one knot
per change in concavity, which works well for most shapes.

2.2 Sample Problems

We now consider a random interfaceΓ(Z) which is dependent upon a random variableZ. The diffusion coefficient
corresponding to the random interfaceΓ(Z) is

a(x; Γ(Z)) =

{
aN (x), γ(x;Z) < 0,

aP (x), γ(x;Z) > 0.
(8)

The random interfaceΓ(Z) represents uncertainty in our knowledge of the location of the interface. The stochastic
interface problem is then given by

−∇ · (a(x; Γ(Z))∇p) = f, x ∈ Ω \ Γ(Z),

p = g, x ∈ ∂Ω.
(9)

Given a set of measurements of the interface location,(x
(n)
i , y

(n)
i ), i = 1, . . . , P we use P-splines to construct an

interfaceΓ(n), a sample from the distribution of interfacesΓ(Z), and define the following sample interface problem:−∇ ·
(
a(n)∇p(n)

)
= f, x ∈ Ω \ Γ(n),

p(n) = g, x ∈ ∂Ω,
(10)

wherea(n) = a(x; Γ(n)).

2.3 The “Nominal” Problem

For the error representation formulae derived in Section 4, we require an approximation of the true interface. We
construct thenominal interfaceΓ̄ as the P-spline whose coefficients are the mean of the coefficients of all sample
interfaces. The nominal interface problem is

−∇ · (ā∇p̄) = f, x ∈ Ω \ Γ̄,
p̄ = g, x ∈ ∂Ω,

(11)

whereā = a(x, Γ̄) is the nominal diffusivity coefficient.

3. THE MIXED FINITE ELEMENT CUT-CELL (MFEC) METHOD

The MFEC method was developed in [14] and uses a fixed (rectangular) grid rather than a grid that is adapted to
the interface. This leads to a “cut-cell” problem which is particularly appropriate for our current purposes since the
finite-element grid is independent of the precise location of each realization (sample) of the interface.
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3.1 Constructing the Model Problem

The MFEC method approximates the discontinuous diffusion coefficienta with a model problem having a continuous
diffusion coefficientam. The model coefficient differs froma only within a modeling domainΩd, the boundary
of which coincides with cell boundaries. Within the modeling domain,am is a continuous, positivity preserving
interpolant defined according to Algorithm 1. The model problem is then solved using a mixed finite element method
with specially chosen approximation and quadrature to produce a solution which is nodally equivalent to a cell-
centered finite volume method.

Since a biquadratic interpolant can allow negative values in between the interpolation nodes, we use a positivity
preserving, rational polynomial withinΩd to interpolate the nodal values calculated via Algorithm 1 in order to ensure
that the model coefficient is positive at all points within the domain.

3.2 The Mixed Finite Element Method

The model problem corresponding to the nominal problem (11) is{
−∇ · (ām∇p̄m) = f, x ∈ Ω \ Γ̄,

p̄m = g, x ∈ ∂Ω.
(12)

In order to solve (12) using a mixed finite element method, we introduce an auxiliary variableūm = −ām∇p̄m, and
the function spaces

W = L2(Ω), V = H(div;Ω).

In weak form, Eq. (12) becomes: Find(p̄m, ūm) ∈ W × V such that

(ā−1
m ūm,v)Ω − (p̄m,∇ · v)Ω = −⟨g,v · n⟩∂Ω ∀ v ∈ V ,

(∇ · ūm, w)Ω = (f, w)Ω ∀ w ∈ W,
(13)

where(·, ·)Ω and⟨·, ·⟩∂Ω represent theL2(Ω) andL2(∂Ω) inner products respectively. We use the first-order Raviart-
Thomas spaces,Wh ⊂ W andVh ⊂ V [20, 21] and specific quadrature to produce a finite element scheme that is
nodally equivalent with a cell-centered finite volume method [22].

The MFEC method for the model problem corresponding to the nominal problem (11) is: Find(p̄m,h, ūm,h) ∈
Wh × Vh such that

(ā−1
m ūm,h,vh)Ω,Q − (p̄m,h,∇ · vh)Ω = −⟨g,vh · n⟩∂Ω,M ∀ vh ∈ Vh,

(∇ · ūm,h, wh)Ω = (f, wh)Ω,MxMy ∀ wh ∈ Wh,
(14)

Algorithm 1: Constructing the model diffusivity coefficientam in Ωd.
1: The modeling domainΩd. A “cut cell” is a cell that is either cut by the interface or a cell that is adjacent to a

cell that is cut by the interface. The modeling domain is the union of all cut cells.
2: Cell centers inΩd. The value ofam at the center of each cell inΩd is the average ofa in that cell.
3: Midpoints of cell boundaries.The value ofam at the midpoints of cell boundaries between two cells inΩd is

set by one of two methods. If the interface lies between the two cell centers thenam is the harmonic average
of a at the two cell centers. Otherwise,am is the normal average ofa at the two cell centers.

4: Cell vertices.Two diagonal lines, each connecting two cell centers pass through every vertex. The value of
am at the cell vertex is the (normal) average two values that are calculated along each diagonal. The value
assigned to each diagonal is either the harmonic or normal average ofa at the two cell centers connected by
the diagonal. The choice of averaging technique is the same as in Step 3. If the interface cuts the diagonal line
connecting the cell centers, the harmonic average is used. Otherwise, the normal average is used.

5: Remaining values.The remaining values ofam lie on the boundary ofΩd. The value ofam is set by evaluating
a at these points.
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whereM is the midpoint rule,Mi, Ti represent the midpoint and trapezoid rule, respectively, in theith coordinate
direction, and

(v,w)Ω,Q = (vx,wx)Ω,TxMy + (vy,wy)Ω,MxTy , (15)

wherev = (vx,vy)
⊤,w = (wx,wy)

⊤.
Similarly, the MFEC method for the model problem corresponding to each sample interface problem (10) is: Find(

p
(n)
m,h,u

(n)
m,h

)
∈ Wh × Vh such that

(
a(n)m

−1
u
(n)
m,h,vh

)
Ω,Q

−
(
p
(n)
m,h,∇ · vh

)
Ω
= −⟨g,vh · n⟩∂Ω,M ∀ vh ∈ Vh,(

∇ · u(n)
m,h, wh

)
Ω
= (f, wh)Ω,MxMy ∀ wh ∈ Wh,

(16)

wherea(n)m is the model diffusion coefficient associated with the sample diffusion coefficienta(n).

4. ADJOINT BASED A POSTERIORI ERROR ESTIMATION

Consider a linear quantity of interest,Q(p) = (p,ψ)Ω for someψ ∈ L2(Ω). Defininge(n)p = p̄ − p
(n)
m,h to be the

pointwise error,Q(e
(n)
p ) = (e

(n)
p ,ψ)Ω. Note that errors are defined relative to the exact solution of the nominal

problem. We first derive an error estimate for the approximate solution to the nominal problem (11) and then obtain
two estimates for the error for each sample problem (10).

4.1 Error Estimation for the Nominal Interface Problem

We begin by defining the adjoint to the nominal problem which is,

ā−1φ̄u −∇φ̄p = 0, x ∈ Ω \ Γ̄,

−∇ · φ̄u = ψ, x ∈ Ω \ Γ̄,

⟨φ̄p,v · n⟩∂Ω = 0, x ∈ ∂Ω, ∀ v ∈ H(div; Ω).

(17)

This adjoint problem is used to determine the error representation formula for the nominal problem.

Theorem 1 (Error estimate for the nominal interface problem). Let (p̄, ū) and (p̄m,h, ūm,h) satisfy(11) and (14),
respectively. Also, let(φ̄p, φ̄u) satisfy(17). Defining the error to bēep = p̄− p̄m,h, we have

(ēp,ψ)Ω =
(
f, φ̄p − Pφ̄p)Ω − ⟨g, (φ̄u − πφ̄u) · n⟩∂Ω − (ā−1

m ūm,h, φ̄u − πφ̄u)Ω,Q

+QE1(φ̄u) +QE2(πφ̄u) +QE3(Pφ̄p)

+
(
(ā−1

m − ā−1)ūm,h, φ̄u

)
Ω,Q

,

(18)

where
QE1(v) = (ā−1ūm,h,v)Ω,Q − (ā−1ūm,h,v)Ω,

QE2(v) = ⟨g,v · n⟩∂Ω,M − ⟨g,v · n⟩∂Ω,

QE3(w) = (f, w)Ω − (f, w)Ω,M ,

(19)

andP andπ are projections onto the finite element spacesWh andVh, respectively.
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Proof. The derivation of the error representation formula (18) is similar to the derivation in [14]. The difference is the
order in which terms are added. For the proof, we defineēu = ū− ūm,h. Then from (17) and integrating by parts,

(ēp,ψ)Ω = −(ēp,∇ · φ̄u)Ω + (ā−1ēu, φ̄u)Ω + (∇ · ēu, φ̄p)Ω [by (17)]

= (f, φ̄p)Ω − ⟨g, φ̄u · n⟩∂Ω + (p̄m,h,∇ · φ̄u)Ω − (ā−1ūm,h, φ̄u)Ω − (∇ · ūm,h, φ̄p)Ω

± (ā−1ūm,h, φ̄u)Ω,Q [by (13)]

= (f, φ̄p)Ω − ⟨g, φ̄u · n⟩∂Ω + (p̄m,h,∇ · φ̄u)Ω − (ā−1ūm,h, φ̄u)Ω,Q − (∇ · ūm,h, φ̄p)Ω

+QE1(φ̄u)± (ā−1
m ūm,h, φ̄u)Ω,Q

= (f, φ̄p)Ω − ⟨g, φ̄u · n⟩∂Ω + (p̄m,h,∇ · φ̄u)Ω − (ā−1
m ūm,h, φ̄u)Ω,Q − (∇ · ūm,h, φ̄p)Ω

+QE1(φ̄u) +
(
(ā−1

m − ā−1)ūm,h, φ̄u

)
Ω,Q

.

(20)

The remaining terms are obtained by the use of (14) and (15), i.e., by Galerkin orthogonality.

Equation (18) represents a minor improvement to the error representation formula presented in [14]. Since the
forward solution and therefore the errorēp depends upon the value ofām at the quadrature points alone, we have
modified the representation formula so that all integrals involvingām are evaluated using the appropriate quadrature.

4.2 Error Estimation for Sample Interface Problems

We derive an error representation formula for each sample problem (10) by representing the error in the quantity of
interest as the sum of the error due to the approximation of the nominal problem and the error due to the difference
between the nominal and sample solutions. In order to calculate the contribution due to the difference between the
nominal and sample solutions, we require the solution to the adjoint problem associated with the discretized model
nominal problem: Find(φ̄p,h, φ̄u,h) ∈ Wh × Vh such that

(ā−1
m φ̄u,h,vh)Ω,Q + (φ̄p,h,∇ · vh)Ω = 0 ∀ vh ∈ Vh,

−(∇ · φ̄u,h, wh)Ω = (ψ, wh)Ω ∀ wh ∈ Wh.
(21)

Using the solution to (21), we obtain the following error representation formula for each sample interface problem.

Theorem 2(Error estimate for a sample interface problem). Let(p(n)m,h,u
(n)
m,h) be the solution of(16)and(φ̄p,h, φ̄u,h)

satisfy the adjoint problem(21). The total errore(n)p = p̄− p
(n)
m,h is the sum of the nominal error̄ep = p̄− p̄m,h (see

Theorem 1) and the sample errorep,n = p̄m,h − p
(n)
m,h, i.e.,

(e(n)p ,ψ) = (ēp,ψ)︸ ︷︷ ︸
nominal error

+
(
a(n)m

−1
− ā−1

m )u
(n)
m,h, φ̄u,h

)
Ω,Q︸ ︷︷ ︸

sample error

. (22)

Proof. Adding and subtracting(p̄m,h,ψ),(
p̄− p

(n)
m,h,ψ

)
Ω
=

(
(p̄− p̄m,h) + (p̄m,h − p

(n)
m,h),ψ

)
Ω
= (ēp,ψ)Ω +

(
p̄m,h − p

(n)
m,h,ψ

)
Ω
. (23)

The first term is obtained from Theorem 1. The second term depends on the difference between the nominal and
sample interfaces. Using the adjoint solution(φ̄p, φ̄u,h), we obtain from (21) and integration by parts,
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(p
(n)
m,h − p̄m,h,ψ) = −(p

(n)
m,h − p̄m,h,∇ · φ̄u,h)Ω

+ (ā−1
m (u

(n)
m,h − ūm,h), φ̄u,h)Ω,Q + (φ̄p,h,∇ · (u(n)

m,h − ūm,h))Ω

= (ā−1
m u

(n)
m,h, φ̄u,h)Ω,Q − (p

(n)
m,h,∇ · φ̄u,h)Ω − (ā−1

m ūm,h, φ̄u,h)Ω,Q

+ (p̄m,h,∇ · φ̄u,h)Ω + (φ̄p,h,∇ · (u(n)
m,h − ūm,h))Ω

= (ā−1
m u

(n)
m,h, φ̄u,h)Ω,Q − (p

(n)
m,h,∇ · φ̄u,h)Ω + ⟨g, φ̄u,h · n⟩∂Ω,M

+ (∇ · (u(n)
m,h − ūm,h), φ̄p,h)Ω [by (14a)]

= (ā−1
m u

(n)
m,h, φ̄u,h)Ω,Q − (p

(n)
m,h,∇ · φ̄u,h)Ω + ⟨g, φ̄u,h · n⟩∂Ω,M

± (a(n)m

−1
u
(n)
m,h, φ̄u,h)Ω,Q [by (14b) and (16b)]

= ⟨g, φ̄u,h · n⟩∂Ω,M + (a(n)m

−1
u
(n)
m,h, φ̄u,h)Ω,Q − (p

(n)
m,h,∇ · φ̄u,h)Ω

+
(
(ā−1

m − a(n)m

−1
)u

(n)
m,h, φ̄u,h

)
Ω,Q

[by (16a)]

=
(
(ā−1

m − a(n)m

−1
)u

(n)
m,h, φ̄u,h

)
Ω,Q

.

(24)

Note that the adjoint solution appearing in the second term of Theorem 2 isφ̄u,h which depends on the nominal
problem and is independent of the particular sample problem. The result for a general linear operator is given in the
Appendix.

While it does not require adjoint solutions to each sample problem, Theorem 2 does require the approximate
solution to the sample problem,u(n)

m,h. If the cumulative distribution function for the quantity of interest is sought,
then this is not an issue since the solution to each sample problem is required. Further, the fact that the modeling
domains for the nominal problem and the sample problem should be close together can also be used to advantage.
Denote the modeling domain for the nominal interface and the sample interface byΩ̄d andΩ(n)

d , respectively. The
mass matrix to solve for the sample problem is equal to the mass matrix for the nominal problem, outside of the region
Ωd = Ω̄d ∪ Ω

(n)
d since the diffusivity coefficients for the two problems are equal outside of this region. This saves a

considerable amount of cost assembling the mass matrix for each problem.
However there are situations in which a cheap estimate of the cumulative distribution function for theerrors in

the quantity of interest would be useful, even in the absence of the cumulative distribution function for the quantity of
interest itself. A cumulative distribution function for the errors in the quantity of interest could provide, for example, a
confidence bound for the error in the quantity of interest for any particular sample. Based on the following lemma, an
approximate error bound can be constructed given an assumption that every sample interface lies close to the nominal
interface.

Lemma 1 (Approximation of the sample error). Let ūm,h andu(n)
m,h satisfy(14) and (16), respectively, and∥ · ∥Ω,Q

be the norm generated by the discrete inner product⟨·, ·, ⟩Ω,Q. Then,((
ā−1
m − a(n)m

−1
)
u
(n)
m,h, φ̄u,h

)
Ω,Q

=
((

ā−1
m − a(n)m

−1
)
ūm,h, φ̄u,h

)
Ω,Q

+O
(
∥ā−1

m − a(n)m

−1
∥2Ω,Q

)
. (25)

Proof. First we write the left side of (25) as((
ā−1
m − a(n)m

−1
)
u
(n)
m,h, φ̄u,h

)
Ω,Q

=
((

ā−1
m − a(n)m

−1
)
ūm,h, φ̄u,h

)
Ω,Q

+
((

ā−1
m − a(n)m

−1
)(

u
(n)
m,h − ūm,h

)
, φ̄u,h

)
Ω,Q

.
(26)

We apply a similar strategy to that found in [14] to the second term on the right-hand side. Subtracting (16) from (14),
we obtain
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(ā−1
m ūm,h − a(n)m

−1
u
(n)
m,h,vh)Ω,Q − (p̄m,h − p

(n)
m,h,∇ · vh)Ω = 0 ∀ vh ∈ Vh,

(∇ · (ūm,h − u
(n)
m,h), wh)Ω = 0 ∀ wh ∈ Wh.

(27)

Choosingvh = ūm,h − u
(n)
m,h andwh = p̄m,h − p

(n)
m,h, (27) simplifies to become

(
ā−1
m (ūm,h − u

(n)
m,h), ūm,h − u

(n)
m,h

)
Ω,Q

=
(
(ā−1

m − a(n)m

−1
)u

(n)
m,h, ūm,h − u

(n)
m,h

)
Ω,Q

. (28)

Taking the norm of both sides, we obtain

∥ūm,h − u
(n)
m,h∥Ω,Q ≤ C∥ā−1

m − a(n)m

−1
∥Ω,Q. (29)

Therefore, (
(ā−1

m − a(n)m

−1
)(u

(n)
m,h − ūm,h), φ̄u,h

)
Ω,Q

= O(∥ā−1
m − a(n)m

−1
∥2Ω,Q). (30)

Lemma 1 shows that we can replaceu
(n)
m,h in Theorem 2 with̄um,h by ignoring a higher order term and therefore,

under these circumstances, it is unnecessary to solve the forward problem for each sample problem in order to compute
the error in each sample problem. The computation for the error representation formula can be further simplified by

noting thatā−1
m − a

(n)
m

−1
is zero outside ofΩd, the modeling domain. We arrive at the following approximate error

representation formula.

Theorem 3 (Approximate error estimate for a sample interface problem). Let (p̄m,h, ūm,h) be the solution of(14)

and(φ̄p,h, φ̄u,h) satisfy(21). If ∥ā−1
m − a

(n)
m

−1
∥2Ω,Q is small compared to

(
(ā−1

m − a
(n)
m

−1
)ūm,h, φ̄u,h

)
Ω,Q

, then

(e(n)p ,ψ) = (ēp,ψ)︸ ︷︷ ︸
nominal error

+
(
(a(n)m

−1
− ā−1

m )ūm,h, φ̄u,h

)
Ωd,Q︸ ︷︷ ︸

approximate sample error

. (31)

Proof. Follows directly from Theorem 2 and Lemma 1.

The computational cost of evaluating the error representation in Theorem 3 is small since we must only evaluate
the second term at the quadrature nodes within the modeling domain.

5. NUMERICAL EXAMPLES

We first present numerical examples that demonstrate the accuracy of the error representation formula in Theorem 3
for individual sample problems. We then use Theorem 3 to approximate the cumulative distribution function (cdf) for
the error in the quantity of interest and assess the accuracy of our approximate cdf. Finally we examine the conditions
for which Theorems 2 and 3 are applicable.

For each of the examples below, the following computational parameters are used unless otherwise stated. Our
domain is given byΩ = [0, 1] × [0, 1] and we discretize uniformly in both thex andy directions with a grid size
of h = 1/8 to solve the forward problem. To solve the adjoint problem we discretize uniformly with a grid size of
h/2. Both the forward and adjoint problems are solved using the MFEC method outlined in Section 3. The quantity
of interest is chosen to be the average of the solution over the domain.

We define the true interfaceΓ to be the zero level set of a functionγ(x, y). The diffusivity coefficient is constant
on either side of the interface,

a(x, y) =

{
a+, γ(x, y) > 0,

a−, γ(x, y) ≤ 0,
(32)
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wherea+ = 1 anda− = 10. The boundary termg is identically zero and the forcing termf is a function ofγ(x, y)
and is chosen such that the exact solution is

p(x, y) =


1

a+
x(x− 1) y(y − 1) γ(x, y), γ(x, y) > 0,

1

a−
x(x− 1) y(y − 1) γ(x, y), γ(x, y) ≤ 0.

(33)

The exact solution is therefore continuous across the true interfaceΓ.
We simulate experimental measurements of the interface location and use those measurement to construct a spline

that approximates the location of the interface as described in Section 2.1. For each sample interfaceΓ(n), we obtain
P = 10 uniformly spaced points(xi, yi)

P
i=1 from the true interfaceΓ. The coordinates of these points are perturbed

by adding independent normally distributed random error resulting in “measurements” given by

x
(n)
i = xi + ϵ

(n)
i,x ,

y
(n)
i = yi + ϵ

(n)
i,y ,

(34)

whereϵ(n)i,x andϵ(n)i,y are sampled from a normal distribution with zero mean and varianceσ2.
The effectivity ratio

E =
Estimated Error

Exact Error
,

is used to measure the accuracy of the error estimator. The more accurate the error estimate, the closerE is to one. We
plot the difference between the effectivity ratio and one, i.e.,|1− E| in order to more clearly demonstrate our results.

Exact integration of the coefficientā−1 is required in the error representation formula. Since these coefficient are
discontinuous, typical Gaussian quadrature does not suffice and we use the midpoint rule on a highly refined mesh
within the cut cells.

5.1 Error Estimation Using Theorem 3

We begin by demonstrating the approximate sample error representation formula in Theorem (3) for sample interfaces
near the nominal interface. In Section 5.1.1 we simulate measuring the radius of a circle with true radiusr. This
generates a one parameter family of sample interfaces, each of which is a circle with a measured radiusr(n). In
Section 5.1.2 we simulate measurements on the boundary of a circle and construct a spline approximation to the circle
as explained above.

5.1.1 Measurements of the Radius of a Circle

The true interface of a circle centered at(x0, y0) with radiusr is given as the zero level set of the function

γ(x, y) = (x− x0)
2 + (y − y0)

2 − r2.

For the true interfaceΓ, we use a circle centered at(0.5, 0.51) with radiusr = 0.32. For simplicity, we choose the
nominal interfacēΓ = Γ for this example. The sample interfacesΓ(n) are obtained by simulating measurements of
the radius of a circle. Therefore, each sample interface is a circle centered at(0.5, 0.51) with radiusr(n) given by

r(n) = r + ϵ(n) with ϵ(n) ∼ N (0, 0.1).

In this example the forcing functionf (n) is defined differently for each sample problem and is determined using (33).
This requires an extra term in the error representation formula equal to

(f (n) − f̄ , φ̄p)Ω − (f (n) − f̄ , φ̄p,h)Ω,MxMy ,

which represents the difference in source termsf̄ andf (n) for the nominal and sample problems, respectively.
Figure 2 shows the difference between the effectivity ratio and the ideal value of one. Note that near the radius

of the nominal circle (r = 0.32), the error estimator performs well. However the accuracy of the error estimator
decreases as the difference between the sample and nominal interfaces increases.
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FIG. 2: Difference between the effectivity ratio of the error estimate and one,|1 − E|, for the interface problem for
50 measurements of the radius of the circle.

5.1.2 Measurements of the Boundary of a Circle

In this example we simulate measurements of the boundary of the circle atP = 10 locations as described above and
using a value ofσ2 = 0.01. An exact solution is not available for the nominal problem and we approximate an exact
solution with p̄exact using a highly refined approximation. To calculatep̄exact we discretize the grid uniformly with a
grid sizeh = 1/64, and use the MFEC method to solve (11).

Figure 3 shows the difference between the effectivity ratio and the ideal value of one for 50 samples of the
measured circle. Noting the scale, we observe that the effectivity ratio is close to one for all samples.
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FIG. 3: Difference between the effectivity ratio of the error estimate and one,|1 − E|, for the interface problem for
50 sets of measurements of the boundary of the circle atP = 10 locations.
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5.1.3 Assessing the Range of Applicability of Theorem 3

We now consider an interface that is defined as the zero level set of

γ(x, y) = 8(x− 0.09)(x2 − 0.29)(x2 − 0.75)(x− 1.2)− y + 0.55. (35)

This interface is shown in Fig. 4. Note that this interface is qualitatively different from the circle in two ways. First, it
is not a closed curve and enters the domain at one boundary and leaves at another. Second, there are two changes in
concavity for this interface whereas the circle has no changes in concavity.

We use this example to consider the effect of the variance of the measurements on the error. We start with a variance
of σ2 = 0.01 and increase it toσ2 = 0.2. For each value of the variance, we estimate the error forN = 50 samples
and also calculate the exact error for those same sample interfaces in order to calculate an effectivity ratio. Table 1
shows the average error in the effectivity ratios for the error representation formulas presented in both Theorem 2 and
Theorem 3. If Theorem 3 is used, the accuracy of the error estimator decreases as the uncertainty in the measurements
increases. The error estimator is consistently accurate for all values of the variance if Theorem 2 is used.

It would be useful to have a method of determininga priori when the approximate error representation formula
in Theorem 3 can be used, and when the uncertainty is too large and Theorem 2 must be used. There is currently no
analytical method of determining this, however if both error estimates are computed for a small number of sample
problems, their results can be compared. If the error estimates are similar, it can be reasonably assumed that the
approximate error formula is appropriate to use. However, if the two error estimates are very different, than the exact
error representation formula should be used to ensure accurate calculations.
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FIG. 4: Exact polynomial interface forγ(x, y) given by (35).

TABLE 1: Mean of the difference between the
effectivity ratio of the error estimate and one,
|1 − E|, for different values of the variance in
the measurement error using Theorems 2 and 3

σ2 Thm. 2 Thm. 3
0.01 1.43e-02 2.75e-02
0.05 1.58e-02 1.48e-01
0.1 4.79e-02 1.57e+00
0.2 2.91e-02 1.93e+00
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5.2 The Cumulative Distribution Function for the Error Using Theorem 3

To approximate the cumulative distribution function for the error in a quantity of interest, we use Theorem 3 to
estimate the error in the quantity of interest forN sample interfaces. These error estimatesQ(e(n)), n = 1, . . . , N
are used to approximate the cumulative distribution function using the estimator

FN (t) =
1

N

N∑
i=1

I(Q(e(n)) ≤ t), (36)

whereI is the indicator function. To approximate the exact cumulative distribution functionF (t), we approximate the
exact error as described in Section 5.1.2 for a large number of samplesNexact≫ N and use the estimator (36).

5.2.1 Measurements of the Boundary of a Circle

We revisit the circle example with the same forcing function and discretization and choose a variance ofσ2 = 0.01.
To approximate the cumulative distribution function we useN = 200 samples. Since the exact cumulative distribution
function is unknown, a higher quality approximation to the exact cumulative distribution function is computed using
p̄exactandNexact= 2000 samples.

The “exact” and approximate cumulative distribution functions are shown in Fig. 5. In Table 2, we measure the
accuracy of our approximate cumulative distribution function usingEµ andEσ2 , defined by

Eµ =
Mean ofFN (t)

Mean ofF (t)
, Eσ2 =

Variance ofFN (t)

Variance ofF (t)
,
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FIG. 5: “Exact” and approximate cumulative distribution function for the errors in the quantity of interest using
Theorem 3 for 200 sets of measurements of the boundary of the circle atP = 10 locations.

TABLE 2: Effectivity ratios for the
mean and variance of the cumulative
distribution function for two interfaces

Interface Eµ Eσ2

Circle 1.00e+00 4.65e-01
Polynomial 1.00e+00 9.78e-01
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which indicate how accurately the mean and variance ofF (t) is estimated byFN (t). For accurate estimators, these
ratios would be near unity. We observe that the mean is well estimated, but the variance is not. This is largely due to
the relatively small number of samples which result in the exact cumulative distribution functions having longer tails
than the approximate cumulative distribution functions.

5.2.2 Measurements from the Polynomial Interface

Here, the measurements are uniformly distributed across the interface and are perturbed by a Gaussian distribution
with zero mean and varianceσ2 = 0.01. We approximate the cumulative distribution function usingN = 200
samples. An exact solution to the nominal problem is obtained with a grid size ofh = 1/64 andF (t) is computed
usingNexact= 2000 samples. The exact and approximate cumulative distribution function lie very close to each other
as seen in Fig. 6, and from Table 2 we see that in this example both the mean and variance of the error are estimated
well by the approximate cumulative distribution function.

5.3 Nominal Error vs Sample Error

Finally we consider the competing effects of the discretization sizeh and the variance of the measurement error
σ2 on each of the nominal and sample errors and on the total error. If we refine the discretization grid, but use the
same value for the variance of the measurement error, eventually the measurement error will dominate. At this point,
more accurate measurements are needed to decrease the total error. Conversely, if we have a fixed discretizetion and
decrease the variance of the measurement error, eventually the discretization error will dominate. For the following
results, we use the polynomial interface.

5.3.1 Grid Refinement with a Fixed Variance for the Measurement Error

We fix the variance of the error in the measurements atσ2 = 0.03 and consider grid sizes ofh = 1/8, 1/16, and
1/32. For each of these grid parameters, we estimate the error using Theorem 3 forN = 200 samples. The nominal
error, the expectation of the sample error, and the expectation of the total error are shown in Table 3. Obviously ash
decreases, the nominal error decreases since the nominal error depends on the discretization. The measurement error
however is essentially independent of the mesh size, i.e., remains constant as the grid is refined since it depends only
on the difference between the sample problem and the nominal problem. For coarse discretizations, the nominal error
dominates, but as the grid is refined, the measurement error eventually comes to dominate. Beyond this point, the total
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FIG. 6: “Exact” and approximate cumulative distribution functions for the errors in the quantity of interest using
Theorem 3 for 200 sets of measurements of the polynomial interface atP = 10 locations.
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TABLE 3: Expectation of the absolute value of the total er-
ror, the absolute value of the nominal error, and the expec-
tation of the absolute value of the sample error forN = 200
samples using Theorem 3. The ratio is the expectation of
the absolute value of the sample error to the absolute value
of the nominal error

h E(|Total|) |Nominal| E(|Sample|) Ratio
1/4 7.29e-02 6.97e-02 1.08e-02 0.15
1/8 3.38e-02 3.58e-02 7.63e-03 0.21
1/16 1.00e-02 9.19e-03 8.01e-03 0.87
1/32 8.09e-03 2.30e-03 7.88e-03 3.42

error stops decreasing and there is no advantage to further refining the grid. Instead, to reduce the error we must obtain
more accurate measurements.

5.3.2 Increasing the Variance of the Measurement Error with a Fixed Mesh

We now use Theorem 2 to estimate the error components for a fixed mesh size as the variance of the measurement
error is increased. The results forN = 200 samples are shown in Table 4. We see that the error in the nominal solution
remains essentially unchanged, while the sample error increases asσ2 increases. As expected, the change inσ2 does
not affect the approximation error since the nominal interface will change only very slightly for each different value
of σ, However,σ2 does affect the expectation of the absolute error in the sample interfaces. For small variance, the
nominal error dominates the sample errors and the total error remains relatively constant, but as the variance in the
sample interfaces increases, the measurement error begins to dominate and the total error increases.

6. CONCLUSIONS

We have derived an efficient adjoint-baseda posteriorierror estimation formula for a diffusive process with an inter-
face whose location is defined by a relatively small number of experimental measurements, each of which is subject
to error. We assume the errors in the experimental measurements can be modeled by a Gaussian distribution and
construct spline approximations through realizations of the interface locations. We approximate the unknown true
interface with a “nominal” interface and compute the error of our numerical solution to this nominal problem. We
then compute the error for each sample interface problem as the error of the nominal problem plus a term that depends
upon the difference between the nominal and sample problems. By comparing the relative sizes of the nominal and

TABLE 4: Expectation of the absolute value of the to-
tal error, the absolute value of the nominal error, and the
expectation of the absolute value of the sample error for
N = 200 samples using Theorem 3. The ratio is the ex-
pectation of the absolute value of the sample error to the
absolute value of the nominal error

σ2 E(|Total|) |Nominal| E(|Sample|) Ratio
0.01 3.29e-02 3.43e-02 3.54e-03 0.10
0.05 3.01e-02 3.31e-02 1.28e-02 0.39
0.1 2.87e-02 3.30e-02 2.75e-02 0.83
0.2 4.46e-02 3.48e-02 5.56e-02 1.6
0.5 1.08e-01 2.90e-02 1.23e-01 4.2
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sample errors we can determine how to best decrease the error in our approximation, either via grid refinement or by
reducing the measurement errors.
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APPENDIX A. THE GENERAL (LINEAR) CASE

We develop the analogs of Theorems 2 and 3 for general linear operators.

APPENDIX A.1 The Continuous Problem

(This is the “nominal” problem in Section 2.3, i.e., our approximation to the true operator.)

Forward problem:Find ū ∈ U such that
(L̄ū, v) = (f, v) ∀v ∈ V, (A.1)

whereL̄ : U 7→ V ∗ andf ∈ V ∗.

Adjoint operator:DefineL̄∗ such that

(L̄u, v) = (u, L̄∗v) ∀u ∈ U, v ∈ V, (A.2)

whereL̄ : U 7→ V ∗ andL̄∗ : V 7→ U∗.

Adjoint problem:Findϕ ∈ V such that

(w, L̄∗ϕ) = (w,ψ) ∀w ∈ U, (A.3)

whereψ ∈ U∗.

Error estimation:Given an approximate solutionuh ∈ Uh ⊂ U , let e = ū− uh ∈ U . Forψ ∈ U∗,

(e,ψ) = (e, L̄∗ϕ) = (L̄e,ϕ) = (L̄ū− L̄uh,ϕ). (A.4)

Sinceϕ ∈ V , add zero in the form(f,ϕ)− (L̄ū,ϕ) to give

(e,ψ) = (f − L̄uh,ϕ) := (R,ϕ). (A.5)

APPENDIX A.2 The Discretized Problem

A discrete approximation to the continuous nominal problem.

Discrete forward problem:Find ūh ∈ Uh ⊂ U such that

(L̄hūh, vh) = (f, vh) ∀vh ∈ Vh ⊂ V. (A.6)
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Define
ē = ū− ūh. (A.7)

Discrete adjoint operator:DefineL̄∗
h such that

(L̄huh, vh) = (uh, L̄
∗
hvh) ∀uh ∈ Uh, vh ∈ Vh, (A.8)

whereL̄h : Uh 7→ V ∗
h andL̄∗

h : Vh 7→ U∗
h .

Discrete adjoint problem:Findϕh ∈ Vh such that

(wh, L̄
∗
hϕh) = (wh,ψ) ∀wh ∈ Uh ⊂ U, (A.9)

whereψ ∈ U∗.

APPENDIX A.3 Discrete Sample Problems

GivenN discrete sample problems andN discrete operatorsL(n)
h , n = 1, . . . , N .

Discrete sample forward problem:Findu
(n)
h ∈ Uh ⊂ U such that

(L
(n)
h u

(n)
h , vh) = (f, vh) ∀vh ∈ Vh ⊂ V, (A.10)

whereL(n)
h : Uh 7→ V ∗

h .

Error estimation for discrete sample problems:Let

e(n) = ū− u
(n)
h = (ū− ūh) + (ūh − u

(n)
h ) = ē+ (uh − u

(n)
h ) ∈ U (A.11)

hence
(e(n),ψ) = (ē,ψ) + (ūh − u

(n)
h ,ψ)

= (ē,ψ) + (ūh − u
(n)
h , L̄∗

hϕh)

= (ē,ψ) + (L̄h(ūh − u
(n)
h ),ϕh)

= (ē,ψ) + (L̄h(ūh − u
(n)
h ),ϕh)± (L

(n)
h u

(n)
h ,ϕh)

= (ē,ψ) + (L̄hūh − L
(n)
h u

(n)
h ,ϕh) + ((L

(n)
h − L̄h)u

(n)
h ,ϕh)

= (ē,ψ) + ((L
(n)
h − L̄h)u

(n)
h ,ϕh),

(A.12)

with the final simplification from (A.6) and (A.10) notingϕh ∈ Vh.

Note: If the right-hand sides in (A.6) and (A.10) arefh andf (n)
h , respectively, there is an extra term of the form

(fh − f
(n)
h ,ϕh) in (A.12).

If, further, it can be shown that
((L

(n)
h − L̄h)(ūh − u

(n)
h ),ϕh), (A.13)

is higher order, then
(e(n),ψ) = (ē,ψ) + ((L

(n)
h − L̄h)ūh,ϕh). (A.14)
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