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We outline the use of a data-free inference procedure for estimation of uncertain model parameters for a chemical model
of methane-air ignition. The method involves a nested pair of Markov chains, exploring both the data and parametric
spaces, to discover a pooled joint posterior consistent with available information. We describe the highlights of the
method, and detail its particular implementation in the system at hand. We examine the performance of the procedure,
focusing on the robustness and convergence of the estimated joint parameter posterior with increasing number of data
chain samples. We also comment on comparisons of this posterior with the missing reference posterior density.
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1. INTRODUCTION

Analysis and design of a wide variety of energy systems rely on computational predictions employing chemical
kinetic models. These models are composed of reaction networks describing interactions among chemical species
via elementary reaction steps. Relevant models typically employ many reaction steps, particularly so for complex
reactant molecules. Broadly, such chemical kinetic models are relevant in a wide range of applications, including e.g.,
combustion, chemical processing, biochemistry, and geochemistry, and can involve heterogeneous reactions among
multiple phases. There are many sources of uncertainty in this broad landscape, including chemical model structure,
model parameters, initial and boundary conditions, general modeling assumptions such as homogeneity and transport,
as well as underlying stochastic dynamics. In the present context, and as a demonstration case with select challenges
corresponding to exothermic ignition, we focus particularly on the inference of uncertain parameters in homogeneous
gas-phase chemical kinetic models relevant in combustion.

It is noteworthy that, in the combustion chemistry context, detailed kinetic models for the oxidation of complex hy-
drocarbons can involveO(103) species, andO(104) reversible reactions. The minimal specification of an elementary
reaction step involves the reaction partners, stoichiometric coefficients, and a reaction rate [1]. Elementary reaction
rates can be, in general, temperature dependent, and are commonly described using Arrhenius rate expressions [1],
k(T) = ATnexp(−E/RoT), whereRo is the universal gas constant, and(A,n,E) are the Arrhenius rate parameters,
being defined as the pre-exponential rate constant, temperature exponent, and activation energy, respectively. Most
commonly, these parameters are either determined experimentally using (e.g., least-squares) fitting [2, 3], or are de-
rived, using rate-rules [4–7], from other measured Arrhenius parameters. Accordingly, they are known only to within
a certain degree of uncertainty.

Given that the input space of chemical models, namely the set of model parameters, is uncertain, it is important to
analyze the impact of this uncertainty on model predictions. There have been great advances in uncertainty quantifi-
cation (UQ) over the past couple of decades, particularly in the context of probabilistic UQ methods, where uncertain
quantities are defined as random variables (or fields) [8–20]. In contrast with local error propagation or moment
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methods [21–23], probabilistic methods can account accurately for the full range of uncertainty in model parameters,
allowing handling of systems with large and arbitrarily distributed input uncertainties, or strongly nonlinear systems
with large amplification of input uncertainties. The use of probabilistic forward UQ methods, on the other hand, does
necessitate a similarly probabilistic characterization of the uncertain input space. This requires the use of statistical
methods for inference of model parameters based on experimental measurements, where the outcome is a joint proba-
bility density function (PDF) on the uncertain input parameters, which is not available from, say, least-squares fitting
methods. In particular, Bayesian inference methods [24, 25] provide a convenient framework for estimating the joint
PDF on the input space given experimental data.

Prior UQ work in chemical systems has explored the forward propagation of uncertainty in chemical ignition,
where the parameters were presumed independent and identically distributed (i.i.d.) for lack of information on any
correlation/dependence among them [26–32]. The extent of each parameter PDF was defined according to its known
error bars, where both lognormal and uniform PDF structures were employed in different works. On the other hand,
Najm et al. [33] have established the importance of knowing the correlation structure of the joint PDF on the param-
eters. Specifically, depending on the chemical model at hand, and parameters of interest, the slope of the dependence
relationship among model parameters can have a large impact on the resulting uncertainty in model predictions [33].
Yet published chemical models are typically specified with nominal values of rate parameters, and with at most error
bars on the pre-exponential rate constant [34, 35]. Neither the uncertainties on the other model parameters(n,E),
nor the correlations among any of the parameters, are typically specified in the literature. Therefore, one may well
say that forward UQ studies with this published information are largely exercises in the art, but do not deliver re-
liable uncertainty estimates. Clearly, there is a great need for reanalysis of available data, as well as new data, to
establish joint PDFs on chemical model parameters. However, raw data, even from recent experiments, are rarely
available, and repeating experiments is both costly and very time-consuming. Therefore, it will be a long time before
the fully specified probabilistic structure of the input space of complex chemical models is well characterized based
on measurements.

In the meantime, however, it is of great interest to explore what wedoknow from previously processed data, and to
constrain input uncertainties of chemical models to be consistent with this information. The key idea can be illustrated
in a simple example as follows. Consider that investigatorA has collected data, fitted it with a straight line using
least-squares fitting, published the experimental details along with the observed nominal values and±3σ uncertainty
ranges in the slopeα and interceptβ of the line, but did not publish the raw data itself, and then duly destroyed the
data. While the two parametersare correlated by the fitting, this information is not reported. Then, investigatorB

comes along, requires the joint PDF on(α,β), but there are no available data to redo the analysis. One option is to
presume(α,β) independent, assigning each a PDF consistent with its published mean and standard deviation values.
However, such a PDF would assign finite probability to some parameter values that clearly do not fit the missing data,
given that the true PDF exhibits a degree of correlation. In this situation, it is clear that, while the data are missing,
other information is in fact available and can implicitly provide constraints on the PDF. Specifically,B knows that the
fitting was done over some range of the data in the experiment, and that the fitting employed a straight line. Further,
givenB’s knowledge of the nominal line, it is clear that, if, say, the intercept is increased beyond its nominal value,
the slope would have to be changed in a manner that gives a line that is still in the vicinity of the nominal line. In
other words, much of the information in the missing data, that would inform the sought-after correlation structure of
the PDF, is in fact available in the other reported information. The question is, how to make this informationexplicit
in the PDF structure in a manner that provides a PDF that is consistent with other given information.

While this problem is related to the missing data problem [36–40], it is different in the sense thatall the data
are missing. Recently, Berry et al. [41] provided a general “Data-Free” Inference (DFI) methodology, founded on
maximum entropy arguments, to handle this problem. DFI involves a two level random walk procedure, one on the
data space and another on the parametric space. The algorithm proposes hypothetical data sets, retaining those that,
when employed for fitting the given model parameters, provide nominal values and bounds that are consistent with
the given information. The retained/consistent data sets are then used to provide a pooled/averaged joint PDF on the
parameters. While this is not generally expected to converge to the original PDF in any sense, it is at least consistent
with the given information. The procedure was demonstrated, and shown to be successful, on algebraic function fits.
Much needs to be done to improve its efficiency, and to demonstrate its accuracy in more complex situations. The goal
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of this paper is to explore its utility and performance in the context of a highly nonlinear ordinary differential equation
(ODE) system, being the set of governing equations for chemical ignition of a hydrocarbon fuel.

In the following, we outline the problem setup, providing an artificial data set on the ignition of a methane-air
mixture, and then use it to fit parameters of a simple chemical model. Discarding the posterior PDF on the parameters,
while retaining its nominal and marginal bounds, we then employ DFI to discover a consistent pooled posterior.
We evaluate the pooled posterior, averaging information from a range of data-space samples, against the reference
posterior. We outline the degree to which the two are similar, highlighting the degree of information, and its utility for
constraining the parametric PDF without recourse to the discarded original data.

2. PROBLEM SETUP

We begin by generating synthetic data using an ignition solution computed with a detailed chemical model, with
added noise. We will use these data to calibrate a simple global chemical model, providing the reference posterior as
the target for the subsequent use of DFI below.

2.1 Ignition with a Detailed Model

We consider a preheated stoichiometric methane-air mixture, at atmospheric pressure. We compute the constant-
pressure homogeneous ignition of this system using GRImech3.0 [42], over a range of initial temperatureTo ∈
[1000,1300] K. The system evolves through a preheat phase during which a radical pool develops and the mix-
ture slowly heats up, before going through a fast ignition characterized by a rapid rise in temperature, consumption
of reactants, and formation of combustion products. Defining the ignition delay timeτ as the time instant at which
T = 1500K, we observe the expected decrease inτ with increasingTo, as shown in Fig. 1.

Then, usingN = 11 data points, defined on a uniform mesh over this range,{To
i }N

i=1 with the associated set of
computed ignition delay times{τi}N

i=1, and employing a Gaussian multiplicative noise term to represent measurement
error, we generate a synthetic data set{To

i ,τd
i }N

i=1, where

τd
i ≡ τi (1+σεi), i = 1, . . . ,N, (1)

whereεi
iid∼ N(0,1), andσ2 = 0.02. Note that this multiplicative noise model is equivalent to an additive noise with a

standard deviation that is proportional to the signal level. The variation ofτ, and the noisyτd, with To is also shown
in Fig. 1
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FIG. 1: Ignition time computed with GRImech3.0 over a range of variation of initial temperature, including also the
corresponding noisy synthetic data points used for inference.
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2.2 Fitting of a Simple Model

We employ a simple chemical model, to be calibrated per the above data, based on a global single-step irreversible
methane mechanism,

CH4 +2O2 → CO2 +2H2O (2)

with the forward rate of progress1

R = [CH4][O2]k(T), (3)

where[·] is concentration (mol/cm3), k(T) is the forward rate, modeled using the Arrhenius rate expression

k(T) = Aexp(−E/RoT). (4)

whereRo is the universal gas constant,T is the temperature,E is the activation energy (cal/mol), andA is the pre-
exponential constant (cm3mol−1s−1). The goal is to infer the pair of parameters(A,E).

We use Bayesian inference to estimate(A,E) given the above model and the synthetic noisy data. This fitting
presumes knowledge of the above form of the error model [Eq. (1)], but leavesσ as a hyperparameter to be inferred.
More specifically, we infer the parameters(lnA, lnE), and the hyperparameterlnσ. SinceA andσ are strictly positive
quantities, it is natural to consider their logarithms as the object of inference, as this enforces their positivity. The
use oflnE, versusE, is a matter of convenience in the present setting, as it proved easier to attain good mixing in
the Markov Chain Monte Carlo (MCMC) [43] procedure withlnE. Further, this is acceptable in the present context
because the range of feasible values ofE is far above zero. In a situation where values ofE ≤ 0 provide feasible fits
of the data, it is necessary to inferE directly rather than its logarithm.

There is a range of MCMC algorithms that can be employed in general. In the present context, we have found that
the degree of strong correlation in the posterior density renders the choice of a good proposal distribution difficult.
Accordingly, it is useful to employ an MCMC algorithm that is adaptive, in the sense that it learns and adapts the
proposal distribution based on existing samples. To this end, we employ an adaptive MCMC (AMCMC) [44, 45]
algorithm to estimate the posterior density on the parameters(lnA, lnE, lnσ). Starting from an initial specified state,
and an initial guess at a covariance matrix for the multivariate normal proposal distribution, this method proceeds
for a specified number of steps with this proposal distribution, before beginning the adaptive phase. In this phase,
the covariance matrix of the proposal distribution is updated based on the continuously increasing sample set. In the
present context, the method generates an MCMC chain with good mixing despite the sharp posterior density.

For a prior, we consider the three parameters to bei.i.d. uniform, with lnA∈ [5,100], lnE ∈ [2.5,50], andlnσ ∈
[−5,0]. The prior choice is generally based on available information prior to taking data. This obviously depends on
the practitioner’s knowledge about the chemical system at hand, i.e., of(lnA, lnE), and of the instrument noise, i.e.,
of lnσ. This being an artificial situation, with simulated data, our prior bounds on each of the three parameters are
simply chosen to be sufficiently wide to represent a significant degree of ignorance about each. The intention, for all
three parameters, is to specify ranges that do not in fact impact the MCMC chain, which we checkeda posteriori.
We could have also simply used improper, i.e., unbounded, uniform priors on each of(lnA, lnE, lnσ), as the present
fitting is sufficiently constrained by the data, and there is no requirement for regularization through the prior.

As for the likelihood function, it is constructed as follows. Withβ≡ (lnA, lnE), and given the known noise model
structure for the ignition timeτ, as shown in Eq. (1) above, we haveτ = τm(To,β)(1+ σε), whereτm() is τ as
computed by the fit model at the given(To,β), we have

τ = τm(To,β)+τm(To,β)σε, (5)

such that
τ |To,β,σ ∼ N

(
τm(To,β), [τm(To,β)σ]2

)
. (6)

1Note that, if the reaction in Eq. (2) were an elementary reaction step, its rate of progress would involve the square of [O2].
However, with the presentglobal reaction the exponents on [CH4] and [O2] are largely a convenient modeling choice, and are
chosen here to be unity.
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Considering the full data setz= {T0
i ,τd

i }N
i=1 = {u,v}, whereu = {T0

i }N
i=1 is the independent data, andv = {τd

i }N
i=1 is

the dependent data, with the abovei.i.d. noise model, the corresponding likelihood forv is given by

p(v|u,β, lnσ) =
1

(2πσ2)N/2

1

∏N
i=1τm(To

i ,β)
exp

{
− 1

2σ2

N

∑
i=1

[
τd

i

τm(To
i ,β)

−1

]2
}

. (7)

It is important to start the AMCMC procedure at a point that is close to the posterior maximum, because of the strong
correlation of the posterior density, as will be seen below. In this low-dimensional parameter space, we discover the
posterior maximum by inspection of the likelihood surface, and start the chain there. More generally, least-squares
fitting can be employed to find the maximum likelihood estimate. Further, we start the chain with an initial proposal
covariance matrix with only diagonal nonzero terms. Adequate initial proposal widths in each dimension were found
by trial and error. Good mixing is achieved after initial transients on all three parameters, as can be seen in Fig. 2,
thereby providing reliable estimation of the posterior.

Employing a105-step-long AMCMC chain, and neglecting a burn-in chain length of 5000 steps, the resulting
marginals forlnA andlnE, produced with kernel density estimation (KDE) employing the chain samples, are shown
in Fig. 3. The corresponding means are(32.17,10.73), and the marginal standard deviations are(0.58,0.031), respec-
tively. Further, the marginal joint posterior pdf for(lnA, lnE) is shown in Fig. 4, again estimated using KDE. Clearly
there is a strong correlation between the two parameters. The posterior is a very narrow ridge with a well defined
slope as observed in other settings [33]. Further, the posterior density is sufficiently far from the edges of the uniform
prior ranges, such that there is no direct impact due to the uniform prior bounds on the posterior. Finally, we note that
the global chemical model evaluated with the posterior mean parameter values provides a good fit with respect to the
original detailed GRImech3.0 ignition time predictions, as seen in Fig. 5.

Having employed Bayesian inference to estimate the uncertain parameters using synthetic data, we now purposely
discard these data, and retain only the following summary statistics and range information, for the subsequent appli-
cation of DFI:
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FIG. 2: Mixing in the AMCMC chain over the first104 steps.
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FIG. 3: One-dimensional marginal posteriors onlnA (left) andlnE (right).
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FIG. 4: Joint 2D marginal posterior on(lnA, lnE).

1. Initial temperatureTo ∈ [1000,1300]

2. Nominal parametersIE(lnA, lnE)≡ β0 = (32.17,10.73)

3. 5% marginal bounds onlnA andlnE: β5 = [(lnA)5,(lnE)5] = (31.22,10.68)

4. 95% marginal bounds onlnA andlnE: β95 = [(lnA)95,(lnE)95] = (33.09,10.78)

This replicates a typical situation where an experimental measurement was made, and such summary information is
reported in the literature, but not the joint PDF or correlation among the parameters, and where the original raw data
are not reported. Note that the specific choice of the 5% and 95% quantiles is simply for illustration. Other quantiles,
or other statistics of the posterior density, can be similarly incorporated in the algorithm

We also do not presume knowledge of thenumberof data points used in the original fitting. It should be noted that
this is a very common occurrence. On the other hand, we do presume knowledge of the instrument fitting model. This
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FIG. 5: Comparison of the GRImech3.0 ignition delay time predictions, and those from the posterior mean global
model predictions. Also superposed is the synthetic data used in the inference.

requires some knowledge of the experimental system, in this case, the constant pressure ignition model, the initial
reactants mixture composition, the definition of the ignition delay time, and the characteristics of the measurement
noise model. We note that the latter is frequently well known for a typical experimental system, e.g., whether the noise
is Gaussian or Poisson, or whether the noise amplitude is signal dependent.

With this setup in place, we now proceed to a description of the DFI algorithm, and its application in the present
context to discover a joint PDF on the parameters of interest that is consistent with the given information.

3. DFI ALGORITHM OUTLINE

The DFI algorithm is outlined in significant detail in [41]. Here we give an essential outline for completeness.
The objective of the algorithm is to estimate a posterior density on model parameters that is consistent with the

given constraints, in the absence of data. In the present context, the algorithm takes as inputs the specification of the
fit model, the instrument noise model, the presumed number of data points, and the initial temperature range, nominal
parameter values, and marginal bounds. Its key output is a posterior density on(lnA, lnE). The algorithm explores
the data space using an MCMC procedure, accepting those data sets that, when employed for inferring(lnA, lnE),
result in a posterior density that satisfies the stated nominals and marginal bounds. Each of the acceptable data sets
is essentially equivalent to the missing data given the available information. Accordingly, acceptable data sets are
pooled, providing an appropriately averaged posterior that represents our knowledge of(lnA, lnE).

More specifically, the construction involves a nested pair of MCMC chains, with an outer chain on the data space,
and an inner chain on the parameter space. At each step of the outer/data chain, a data set is proposed, which is
evaluated using the inner/parameter chain for consistency with the given information. The inner chain estimates a
posterior density on model parameters, given the data set provided by the outer chain. The consistency check, which
makes use of parameter samples from the inner chain, constitutes the likelihood function for the outer chain. Each
accepted data chain step provides, via the inner chain, a consistent posterior on the model parameters. We employ
logarithmic pooling, following [41], to arrive at a consensus/averaged pooled posterior on the parameters. This pooled
posterior is the essential output of the algorithm.

We can write the two Bayesian problems solved by the MCMC chains as follows. Let the given information beI ,
the state vector for the outer (data) chain beζ, and the state vector for the inner (parameter) chain beλ. We then have
the outer chain solving the Bayesian problem

p(ζ|I) ∝ p(I |ζ)π(ζ) (8)
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and the inner chain solving
p(λ|ζ) ∝ p(ζ|λ)π(λ), (9)

where the likelihood function of the outer chain is defined based on the posterior of the inner chain, thusp(I |ζ) =
F(p(λ|ζ), I). For each proposedζ in the outer chain, the inner chain is run, providing the posteriorp(λ|ζ). This then
provides the estimate ofp(I |ζ), the likelihood function of the outer chain, and the posteriorp(ζ|I), which enables the
jump to the next outer chain step.

Delving into more detail, we note that, along with the “data” set proposed at each step of the outer chain, the
algorithm proposes the single nuisance parameter, namely the log standard deviation of the data setlnσd, such that,
with each data set comprised ofN data points, each data point being a pair of(T0

i ,τd
i ), the outer chain is2N + 1-

dimensional, where
ζ = (T0

1 ,τd
1, . . . ,T

0
N ,τd

N, lnσd) = (z, lnσd), (10)

wherez= (T0
1 ,τd

1, . . . ,T
0
N ,τd

N). The state vector of the inner chain is

λ = (lnA, lnE, lnσ) = (β, lnσ), (11)

whereβ = (lnA, lnE). Given the proposedζ, particularly its subsetz, the inner chain is run, arriving at a posterior
density on(lnA, lnE, lnσ).

Recalling the above decomposition of the data vector,z = {u,v}, the formulation of the inner chain likelihood
function for any given(β, lnσ) is given by

p(z|β, lnσ) = p(u,v|β, lnσ) = p(v|u,β, lnσ)p(u|β, lnσ). (12)

Then, given that all we know about the independent data vectoru = {To
1 , . . . ,To

N}, is that it is within the interval
[1000,1300], we rely on maximum entropy arguments, dictating a uniform density on this interval foru. Accordingly,
p(u|β, lnσ) = 1/300for proposed data sets on this interval, and we have, per Eq. (7),

p(z|β, lnσ) ∝ p(v|u,β, lnσ) =
1

(2πσ2)N/2

1

∏N
i=1τm(To

i ,β)
exp

{
− 1

2σ2

N

∑
i=1

[
τd

i

τm(To
i ,β)

−1

]2
}

. (13)

This then is the inner chain likelihood function for any(β, lnσ).
The key step in the algorithm is the use of the inner-chain posterior density to construct the likelihood function

for the outer chain. The construction of the likelihood is problem specific, being defined by the available information.
Given that, here, we presume knowledge of the nominal values of(lnA, lnE) and their marginal bounds, we construct
the likelihood function accordingly to penalize deviations from these given values, as outlined below.

Denoting the nominal parameters byβ0, we define the likelihood function for the outer chain, capturing the
consistency of the proposed data set with the given model parameters nominals and bounds, using the following
normalized consistency weight function [41]:

p(I |ζ) = wδ(z, lnσd) = Fδ(z)
p(z, lnσd |β0)

max
β,σ

[p(z, lnσ |β)]
. (14)

The termp(z, lnσd |β0) measures the likelihood of the(z, lnσd) data given the nominal model parameters. It is com-
puted using the likelihood function of the inner chain [Eq. (13)] evaluated at(β0, lnσd), since

p(z, lnσd |β0) = p(z|β0, lnσd)π(lnσd |β0) = p(z|β0, lnσd)π(β0, lnσd)/π(β0), (15)

wherep(z|β0, lnσd) is the inner chain likelihood function, andπ(β0, lnσd) the inner chain prior, both evaluated at
the given(β0, lnσd). Distinct from the baseline version of the algorithm in [41], the likelihood termp(z, lnσd |β0) is
normalized in Eq. (14) by its maximum value, evaluated from the inner chain samples, such that the ratio is in [0,1].
This makes the construction more robust to situations wherezwith a smallσd is proposed in the data chain, resulting
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in a large peak amplitude ofp(z, lnσ|β), that could dominate the bounds check, in the absence of the normalization,
to the point of ignoring it. The bounds check is provided byFδ(z), as discussed in the following.

Given a positive numberδ, Fδ(z) measures the mismatch between the given quantiles and those from the marginal
inner chain posteriorp(β |z). It is defined in the present context, with the chosen quantile statistics, as

Fδ(z) ∝
2

∏
i=1

fδ

(
[pi(z),1− pi(z)−qi(z),qi(z)]

∣∣∣∣ [0.05,0.90,0.05]
)

, (16)

where

p1(z) =
∫

lnA<(lnA)5

p(β |z)dβ, q1(z) =
∫

lnA>(lnA)95

p(β |z)dβ, (17)

p2(z) =
∫

lnE<(lnE)5

p(β |z)dβ, q2(z) =
∫

lnE>(lnE)95

p(β |z)dβ, (18)

and the trinomial density with probabilitiesp+ r +q = 1 is noted[p, r,q]. Further, fδ is defined as [41]:

fδ([p, r,q] | [0.05,0.90,0.05]) = exp
{
−δ

(
pln

p
0.05

+ r ln
r

0.90
+qln

q
0.05

)}
, (19)

being the Kullback-Leibler (KL) density [41] formed of the KL divergence from the density[p, r,q] to [0.05,0.90,0.05].
This density estimates the average probability that samples from one density are consistent with another. It has a peak
of 1 at the desiredp = q = 0.05, with a rate of decay toward zero that increases with increasingδ > 0. Thus,δ deter-
mines the width of the overall densityFδ(z), and therefore the tolerance for deviations from the desired values of the
quantiles on(lnA, lnE). With largeδ, the bounds consistency check is tight, tending to strongly reject proposed data
sets whose resulting quantiles differ slightly from the requirement. Effectively,δ also determines the relative weight
given to the bounds check versus the nominal parameter value check in the likelihood function.

With the likelihood functions of both inner and outer chains defined, we now lay out the overall structure of the
algorithm. The outer chain employs a single-site MCMC algorithm, Algorithm 1. The choice of a single-site algorithm
is motivated by its relative ease of tuning, particularly since the chain is sampling a data manifold in a high dimen-
sional space. The algorithm employsKd steps. In each step, it explores each of the2N + 1 directions sequentially,

Algorithm 1: Outer Chain Single Site MCMC algorithm

Input : ζ0 = (z0, lnσ0
d) ∈ R2N+1, p0 = p(ζ0|I), s(2N+1)×1

Output : MCMC chain samples
foreachk = 1, . . . ,Kd do

ζk ← ζk−1

pk ← pk−1

foreach i = 1, . . . ,2N+1 do
δζi ← ξ∼ N(0,si)
ζ∗i ← ζk

i +δζi

p∗ = p(ζ∗|I)
α = min

(
1,

p∗

pk

)

if u∼U(0,1) < α then
ζk

i ← ζ∗i
pk ← p∗

end
end

end
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employing the conventional Metropolis-Hastings (MH) acceptance test to update the state in each dimension. The
un-normalized posterior density evaluated for every candidateζ∗, is

p(ζ∗|I) = p(I |ζ∗)π(ζ∗), (20)

employing the data likelihood functionp(I |ζ) in Eq. (14) above, and the prior onζ, π(ζ), further specified below. The
data likelihood function evalution requires the above-described statistics on the parameter posterior, employing the
inner MCMC chain on the parameter space. The inner chain is outlined in Algorithm 2. It employsKp steps. Here
we use the AMCMC construction referred to above, on theM dimensional parameter space (M = 3). In each step, a
jumpδλ in M-dimensions is explored, followed by the usual MH acceptance test. The un-normalized posterior density
evaluated for every candidateλ∗, is

p(λ∗|z) = p(z|λ∗)π(λ∗), (21)

employing the parameter likelihood functionp(z|λ) in Eq. (13), and the prior onλ, π(λ), specified below. The eval-
uation ofδλ follows [44, 45], and is outlined in Algorithm 3. The procedure requires an initial guess at a covariance
matrix for the proposal distribution,Cinit , which it uses up to stepKstart, while accumulating data to estimate the actual
local covariance matrixΘ of the posterior density. For chain steps in the range[Kstart,Kstop], and at chosen intervalsq,
an updated covariance matrixC for the mutlivariate normal proposal density is evaluated, as shown. The scaling byρ

follows [44, 45] and requires a specification of a scale factorκ, as shown. The toleranceε is a guard against possible
ill-conditioning of the Cholesky decomposition, used to arrive at a lower triangular matrixL, whereLLT = C. Finally,
δλ is evaluated by scaling ani.i.d. normal vectorξ by the matrixL.

With the outer chain execution completed, we haveKd consistent data sets, which are pooled to arrive at the requi-
site pooled posterior. Employing logarithmic pooling [41], this is done by running the inner chain inference one more
time, with the data setZ = {z1, . . . ,zKd}, and with the likelihood function

p(Z |λ) =

[
Kd

∏
k=1

p(zk |λ)

]1/Kd

, (22)

wherep(zk|λ)≡ p(zk|β, lnσ) is given above in Eq. (13).
The nested MCMC chain construction results in a computationally expensive algorithm. On the other hand, data

chains can be run in parallel and the resulting chain statistics combined. This introduces significant computational
savings.

In the following, we apply the above procedure to the chemical system at hand.

Algorithm 2: Inner Chain MCMC algorithm

Input : λ0 = (β0, lnσd) ∈ RM; z; p0 = p(λ0|z)
Output : MCMC chain samples
foreachk = 1, . . . ,Kp do

δλ← EvalStep(λk−1)
λ∗← λk−1 +δλ

p∗ = p(λ∗|z)
α = min

(
1,

p∗

pk−1

)

if u∼U(0,1) < α then
λk ← λ∗
pk ← p∗

else
λk ← λk−1

pk ← pk−1

end
end
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Algorithm 3: Algorithm EvalStep(λk−1).

Input : Cinit ∈ RM×M; λk−1; M; ρ = 2.42κ/M; κ = 1; ε = 10−8; Kstop= 108; Kstart= 103; q = 10
Output : δλ

if k = 1 then
µk = λk−1; Θk = 0M×M; C = Cinit

Cholesky Decomposition: Eval lower triangular matrixL s.t.LLT = C
else

r =
k−2
k−1

; s=
1

k−1
if k < Kstop then

µk ← (
µk−1(k−1)+λk−1

)
/k

foreach i = 1, . . . ,M; j = 1, . . . ,M do

Θk
i j ← rΘk−1

i j +s
(
(k−1)µk−1

i µk−1
j −kµk

i µ
k
j +λk−1

i λk−1
j

)

end
if k > Kstart and k modq = 0 then

C = ρ(Θk +ε1)
Cholesky Decomposition: Eval lower triangular matrixL s.t.LLT = C

end
end

end
δλ← Lξ, with ξM×1 ∼ N(0, I)

4. APPLICATION TO THE CHEMICAL SYSTEM

To begin with, given the computational cost involved in the double-chain structure of the algorithm, we employ a
Polynomial Chaos (PC) [8, 19, 46] surrogate [17] forlnτ, with the ignition delay timeτ as defined above, over the
range of interest of the parameters(lnA, lnE) and initial temperatureTo. This involves, most conveniently, and in order
to enforce uniform accuracy of the surrogate over the input(lnA, lnE,To) range, definingi.i.d. uniform distributions
for these inputs on their chosen ranges, and propagating this specified uncertainty forward through the model to
provide the corresponding PC representation oflnτ(lnA, lnE,To). Note that the choice of these uniform distributions
is simply a means for constructing a PC representation, and hence a polynomial response surface surrogate, forlnτ

over a range of variation of the selected inputs, and does not relate to “actual” uncertainties on inputs/outputs reflecting
our knowledge. The input ranges are defined by estimating the expected range of exploration of each inputlnA, lnE,
andTo, by the DFI procedure. In turn, this is informed by the above given initial temperature range and summary
statistics on(lnA, lnE) presumed reported, which also inform the priors for the inner chain. Of course if, in the course
of using the surrogate model, the MCMC chains explore ranges of the parametersoutsidethe range over which the
surrogate is built, one has the option of rebuilding the surrogate over a larger input range or simply using the full
model for the offending samples. Finally, we used a sixth order Legendre-Uniform PC [47] surrogate over the input
3D space, built using full tensor product quadrature [18, 48, 49]. The surrogate was found to have a relative rms error
with respect to the actual model of 0.06%, as evaluated on a uniform test mesh distinct from the quadrature points.
The local absolute and relative errors inlnτ are plotted versus the mesh point index, for the203 test mesh points in
the 3D space (lnA, lnE, To), in Fig. 6.

Given that the number of data points is not known, we presumeN = 8 data points for the data chain arbitrarily.
This choice can be made probabilistically too. In particular, one can declare a distribution of possible values ofN
based on prior knowledge, e.g.,N∼U [5,50]. Then, the DFI answer can be marginalized over this PDF. While this is
computationally expensive, it is nonetheless straightforward. In the present context, while we did not marginalize over
N, we did explore the effect ofN = 4,8,16 on the resulting pooled posterior. These results, not shown, indicate that
the pooled posteriorp(lnA, lnE, lnσ|Z) exhibits smaller volume, i.e., lower uncertainty, with increasingN. However,
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FIG. 6: Local absolute and relative surrogate errors for the203 test mesh points.

this effect is manifested primarily through the nuisance parameterlnσ. We find negligible difference in the marginal
pooled posteriorp(lnA, lnE|Z) for the threeN values, while the 1D marginal pooled posteriorp(lnσ|Z) is narrower
and peaked at lowerlnσ values for higherN. The negligible impact onp(lnA, lnE|Z) suggests that, in the present
problem, the given information is sufficient to constrain the marginal pooled DFI posterior on(lnA, lnE), irrespective
of the presumedN.

For the outer chain, we presume independent uniform priors onTo ∈ [1000,1300], and lnσd ∈ [−7,3] and a
strictly positive improper uniform prior onτ > 0. The prior bounds on the ignition temperature are based on the given
information on the range of the experimental conditions. The lower bound on the ignition time is of course physically
motivated. As for those onlnσd, they are subjectively chosen, and are in the present context inconsequential as
the chain never reaches them. They reflect the degree of belief on the maximal and minimal possible noise levels
in the data. The likelihood function, which, as stated above, involves the densitywδ(z, lnσd) in Eq. (14), employs
δ = 100. The chain starting point is chosen atlnσ0

d = −2, To
i = To

min + ih1, andτi = τm(To
i ,β0)(1+ σ0

dεi) where
h1 = (To

max−To
min)/(N + 1), for i = 1, . . . ,N. The proposal distribution in each dimension is a zero-mean Gaussian

with a specified variance.
As for the inner chain, with the state vector(β, lnσ), we usei.i.d. uniform priors for all variables. We conserva-

tively set the lower and upper bounds on each uniform prior atβ− = β0−5(β0−β5), andβ+ = β0 +5(β95−β0).
Further, consistent with the outer chain, we setlnσ∼U [−7,3]. The inner chain starting point is at(β0, lnσd), and we
employCinit = diag[10−3,2.8×10−6,4×10−4].

A sample of resulting data from a 5000-long outer/data chain is plotted in Fig. 7, where each step in the chain
is defined by the elements of the 17-dimensional data vector defined above. We note that there is no expectation of
“good mixing” here, as the data chain simply provides a means of generating a random walk on a manifold in the
data space that is defined/constrained implicitly by the given information [41]. The key requirement is to provide
sufficient coverage of the data space, which we will examine further below employing data posterior statistics. The
corresponding sampled data are well clustered around the nominal model, and the original data, as can be seen in
Fig. 8. Clearly, only data sets clustered within the neighborhood defined by the missing data are found by the algorithm
to be consistent with the given information, and are therefore accepted.

Beyond this short data chain sample, a sufficiently large number of data samples is needed to ensure convergence
of the algorithm. However, this can be done in parallel, with multiple data chains. Accordingly, we ran 50 data chains
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FIG. 7: A segment of the DFI data chain, showing the MCMC sampled values of the data vector. In the bottom two
frames, each line corresponds to the sampled value of each data point,(τi ,To

i ), i = 1, . . . ,N, with N = 8.
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FIG. 8: A plot of the DFI data chain samples from Fig. 7, superposed on the original model predictions and data.

in parallel, each 5000-long, and used unions of the data sets, to arrive at the pooled posteriors. Since there is no
expectation of good mixing, there is no associated definition of a burn-in length for any given chain. We do define
such a burn-in period in a statistical sense, however. A scatter plot of the posterior probability values on the sampled
data sets from the 50 chains is shown in Fig. 9. The plot exhibits a small upward average trend in the first 500 steps
before “typical” behavior is observed in a statistical sense. Conservatively, we define a burn-in period of 1500 steps,
thereby neglecting the first 1500 samples from each data chain. Again, we note, as shown in Fig. 10, that the 50-chain
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FIG. 9: Plot of the data posterior density samples from all 50 chains superposed. Every fifth chain step is plotted for
convenience.
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FIG. 10: Scatter plot of 50 chains, with the first 1500 burn-in states removed from each chain. Only every 25th chain
state is plotted for convenience.

data are clustered around the nominal model. The data shown in the figure exclude 1500 samples from the beginning
of each chain.

Further, we illustrate in Fig. 11 the means as well as the 5% and 95% quantiles extracted from the inner/parameter
posteriors evaluated at each data chain step, for each of the 50 chains, shown for the last 500 steps of each chain.
The full length of the chains exhibits a similar statistical distribution of the means and quantiles; this is illus-
trated here with this short segment for clarity. The figure shows the general agreement of the summary statistics
extracted from each data chain step parameter posterior with those of the reference posterior. Following [41], the
scatter of the 5/95% quantiles can be reduced by increasingδ, while that of the nominal can be controlled by raising
p(z, lnσd|β0)/maxβ,σ[p(z, lnσ|β)] to a suitable power greater than unity, in Eq. (14).
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FIG. 11: Plot of the means, as well as the 5% and 95% quantiles from the parameter posteriors from each data chain
step, for all 50 chains, and for the last 500 steps from each chain. The left frame shows those forlnA, while the right
frame shows those forlnE. The solid lines indicate the corresponding values from the reference posterior.

The pooled parameter posteriors show similarly good agreement with the reference posterior. In fact, individual
marginal(lnA, lnE) posteriors, from each data chain step, exhibit a structure very much in alignment with the ref-
erence density, albeit with a scatter in their summary statistics as seen in Fig. 11. We illustrate in Fig. 12 the 2D
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FIG. 12: Plot of the pooled 2D marginal(lnA, lnE) posteriors computed from a range of number of data steps, from
1 to 3500, as indicated in each frame, from a single data chain. The pooled posteriors (red) are superposed over the
reference posterior (black). Posterior densities are estimated from posterior samples using KDE.
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marginalized pooled distributions for an increasing data-chain segment length, from 1 to 3500 steps, each superposed
on top of the reference posterior. There is little change in the marginal pooled density with increasing data size, beyond
a small change in slope of the major axis of the PDF ellipse. The data from all 3500×50 retained data sets in all 50 data
chains lead to a similar marginalized pooled density, shown in Fig. 13. Clearly, in this case, the constraints provided
by the given information are sufficiently strong, such that very little change in the 2D marginal parameter posterior is
evident beyond a single data set. In other words, the step-by-step variation of the posterior, evident in Fig. 11, exhibits
sufficient stationarity, such that the essential global structure of the 2D pooled posterior density is relatively stable,
even with a single data set. Nonetheless, there is a discernible slight change in the slope of the distribution in going
from 1 to 50 chains, evident in comparing Figs. 12 and 13.

Similar robustness can be seen in the 1D marginals, albeit now with discernible scatter, which can be more easily
seen in line plots than in contour plots. Figure 14 shows the 1D marginals for a range of data sample set sizes from a
single data chain. The plots show small differences among the various shown posteriors, and between each of them and
the reference density. Similarly, the relatively small scatter of the 1D marginal posteriors from each of the 50 chains,
each involving 3500 pooled posteriors, is shown in Fig. 15. Further, the 1D marginal pooled distributions resulting
from pooling successively added numbers of chains, up to the full set of 50 chains, are shown in Fig. 16. There is
little evident change in the marginal pooled posterior among the different lengths of aggregated chains. Moreover, as
with the shorter length pooled posteriors, there are only minor differences here between any of the marginal pooled
posteriors and the reference.

Note, nonetheless, that the 2D marginal pooled posterior on(lnA, lnE) does not converge to the 2D marginal
reference posterior (Fig. 13). This is not surprising, as we only have partial/summary information on the latter. What
is remarkable, in fact, is the extent to which the pooled posteriors, even with small data volumes, do approximate
the missing posterior. This is a testament to the nearly complete information available in the summary statistics, and
constrained by the other given information, in the present context.

In order to more quantitatively examine the self-convergence of the pooled posterior with increasing data volume,
we examine the Kullback-Leibler (KL) divergence between pooled posteriors corresponding to successively larger
data volumes, as shown in Fig. 17. Specifically, defining the pooled posterior withk chains aspk(lnA, lnE, lnσ), and
the KL divergence betweenpk andpk/2 asDk, given by

Dk = DKL(pk/2||pk)≡
∫

pk/2 ln
pk/2

pk
dlnAdlnEdlnσ, (23)
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FIG. 13: Two-dimensional marginal parameter posteriors on(lnA, lnE) resulting from pooling 50 chains of data
(red), compared with the reference known posterior (black).
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FIG. 14: Plot showing the pooled 1D marginals forlnA (left) andlnE (right) for a range of data sample set sizes from
a single data chain.

we show in the figure the evolution ofDk for k = 2,4,8,16,32. Given the
(50

k

)
ways of combiningk chains out of 50

without regard to order, the plot shows the scatter ofDk for 1024 randomly sampled permutations of the 50 chains2

for eachk, as well as the associated mean value. This is done in order to examine statistical convergence trends. The
results clearly indicate the convergence of the mean with increased number of chains. Moreover, the slope of the mean
line indicates roughly inverse linear dependence on data set size, i.e.,Dk ∝ kγ with γ≈−1. The empirically observed
γ value shows some dependence on the particular KL divergence choice, namely as above or asD∗

k = DKL(pk||pk/2),
which is not surprising given the finite number of chains and the asymmetry of the KL divergence. The observed
values, with

2The random samples are generated and used as follows. We sample 1024 random integer vectors(c1,c2, . . . ,c50) using the “entry-
by-entry brute force” method [50]. Then, for each sample, we evaluatepk from the firstk chainsc1, . . . ,ck, for eachk.
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FIG. 15: Plot showing the scatter of the pooled 1D marginallnA (left) andlnE (right) posteriors for each of the 50
chains (gray), based on 3500 data sets from each data chain, superposed on the reference posteriors (black).
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FIG. 16: One-dimensional marginal parameter posteriors onlnA (left) andlnE (right) resulting from pooling different
volumes of data, compared with the reference known posterior. We show the posteriors resulting from pooling of 2
chains (2c), 5 chains (5c), etc. There is very little change in the pooled marginal posterior past the first five chains.

2γ =
Dk−Dk/2

Dk/2−Dk/4
(24)

andγ∗ defined similarly in terms ofD
∗
, are shown in Table 1. The exponent is close to−1 in both cases. Note that

these values were found to change by only± a few percent in going from 512 to 1024 samples, and are therefore of
corresponding accuracy.
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between successive pooled posteriors. Also shown is the scatter in each of the KLdiv values. The red line indicates
the evolution of the mean with increased number of chains.

TABLE 1: Observed values of the decay rate of the KL divergence be-
tween pooled posteriors with increasing data volume. The left column is
the number of chains, while the second and third columns are the observed
decay rates for the two alternate KL divergence definitions

k γ γ∗

4 –1.56 –1.05
8 –1.09 –0.90
16 –0.95 –0.84
32 –1.12 –1.00

5. CONCLUSIONS

We have explored the use of our recently developed DFI procedure for the estimation of input uncertainties for a
chemical model for methane-air ignition. The procedure provides a means for estimation of a joint posterior on model
parameters that is consistent with available information, in the absence of data that had been previously used to arrive
at some/all of this information. This joint posterior provides a more accurate/consistent characterization of parametric
uncertainty than the commonly used alternative employing independent parameters.

We set up the problem by first creating a hypothetical noisy data set, and using it to estimate a posterior distribution
on model parameters with Bayesian inference. We subsequently discard the data and the posterior while retaining
summary statistics on the latter. Then, we use DFI to find a posterior density that is consistent with these summary
statistics and other known information.

The method was applied in the context of methane-air ignition with a simple global single-step irreversible Ar-
rhenius kinetic model. Ignition time, over a range of input temperature, was the model observable of interest. Model
parameters of interest were the Arrhenius rate expression pre-exponential and activation energy.

We detailed the specification of the nested pair of MCMC chains involved in the procedure with the requisite
likelihood functions for the problem at hand. We examined the performance of the algorithm for a range of data
volumes, highlighting the characteristics of the data chain samples and the consistency of the accepted parametric
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posteriors. We used a number of parallel data chains in order to accelerate the scheme. We examined the resulting
pooled posteriors in terms of their self-similarity and in comparison to the reference posterior, with increasing numbers
of data chains. We also measured the convergence rate of the KL divergence between pooled DFI posteriors obtained
with increasing data volumes.

In this chemistry problem, likely due to the strong nonlinearity of exothermal ignition, we find very small variation
of the marginal pooled DFI posterior after a very short number of data samples. Similarly, we find negligible impact
on the marginal pooled DFI posterior on(lnA, lnE) with a 2× up/down variation in the presumed number of data
points. This overall robustness suggests that acceptable data sets are strongly constrained by the given information. In
other words the available summaries are essentially sufficient statistics. We note that, while the accepted posteriors at
each data chain step exhibit some variability in their means and marginal quantiles, their overall structure and slope
in the 2D parameter plane was found to be quite robust. Finally, we find that the mean KL divergence between pooled
posteriors decays nearly linearly with the number of data samples on which they are based.

Moreover, the marginal pooled DFI posterior is found to be very close to the missing reference posterior. While
this is generally desirable, it is not necessarily expected, unless sufficient information based on the missing data is in
fact available. In a context where less information is available, e.g., say, conditional/marginal bounds are reported on
only one of the two parameters, or nothing is known about the nature of the instrument noise structure, it is expected
that the pooled posterior may well differ significantly from the reference posterior. This is acceptable in principle, as
the object of the algorithm isnot to discover the missing posterior (a potentially impossible feat in the absence of the
original data), but rather to find a posterior that is consistent with the given information.

We will explore in future work the consequences of more limited information in this context. We will also explore
the utility of the methodology in the estimation of joint posteriors among parameters in more realistic chemical mod-
els involving multiple elementary reversible reaction steps. In this setting, parameters of reaction rate expressions for
multiple reaction steps can be correlated by the experimental fitting procedures, where previously measured parame-
ters of one reaction are used in the fitting employed to estimate parameters of the rate expression of one or more other
reactions. Accordingly, a dependence tree, to be built based on examination of experimental procedures, is expected
to influence the correlation structure of the joint posterior on the full set of uncertain model parameters.
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