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A heat transfer enhancement system including CuO/water nanofluid in a corrugated tube equipped
with twisted tape was modeled by two well-known artificial neural network techniques. The mul-
tilayer perceptron and group method of data handling neural networks were employed to predict
thermal-hydraulic characteristics as functions of main operating conditions. In addition, the genetic
algorithm (GA) approach was used to develop applied empirical correlations. The purpose of the mod-
els is to estimate Nusselt number (Nu) and friction factor (f) in the investigated heat exchanger.
The main effective parameters investigated in this study are volume fraction of nanoparticle, twist
ratios of twisted tape, and Reynolds number. According to the conflicting relationship between heat
transfer and pressure drop, the more accurate model was selected as the objective functions for multi-
objective optimization by GA. The optimum operating conditions of the investigated heat exchangers
that lead to a trade-off between Nu and f were proposed.

KEY WORDS: optimization, genetic algorithms, neural network, heat transfer enhance-
ment, nanofluid, tube insert

1. INTRODUCTION

Heat transfer enhancement (HTE) approaches are highlydegiaue to the importance of op-
timizing energy consumption. In general, HTE is divideditwo methods: active and passive.
Some significant cases of passive methods include emplaangfluids or tube inserts, and
roughening channel surfaces. These methods are usualiynpanied by undesirable effects
like increasing pressure drop along with enhancing heastea. Therefore, developing accurate
and reliable models for predicting heat transfer and presdgtop in HTE systems are very suit-
able to optimize heat exchangers. The literature reviewshbe great capability of artificial

neural networks (ANNSs) to model and predict target variabieheat transfer systems (Ali et al.,
2015; Mohanraj et al., 2015). Tube inserts cause a signtfenagmentation in heat transfer rate
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NOMENCLATURE
A coefficient or weight vectors W weight
A;  inner heat transfer surface area{m w twisted tape width (m)
b bias Y ultimate output
¢,  specific heat capacity of fluid y neuron output/Twist length (m)
(J/kg K)
d diameter of the corrugated tube (m) Greek Symbols
f friction factor © volume fraction of nanoparticle
F  transfer function Il dynamic viscosity (Pa s)
h heat transfer coefficient (WAK) o density (kg/ni)
k thermal conductivity (W/m K) v fluid dynamic viscosity
L length of the test section (m) (kg/s m)
m  mass flow rate (kg/s)
N number of data Subscripts
Nu  Nusselt number f base fluid
P predicted data i input layer/inner
AP pressure drop (Pa) in  inlet
Re  Reynolds number Jj hidden layer
r real data k output layer
T temperature (K) n nanofluid
U  overall heat transfer coefficient out outlet
V' velocity (m/s) D nanoparticle

through the formation of swirling flows and increase the eilehce intensity near the tube wall.
The effects of different tube inserts on heat transfer ogiefit and turbulence intensity have
been investigated in several studies during the past twaddsc(Ali et al., 2015; Boulahia et al.,
2017; Piriyarungrod et al., 2018; Shabanian et al., 20BfqriNasr et al. (2010) examined the
capability of the ANN to model the thermal and flow data redate helical wire coil inserts.
The empirically obtained data of the four wire coil insertsreremployed for developing the
prediction model. Moreover, the precision of the developdiiNs was compared with power-
law correlations. The results indicate the higher predictccuracy of the ANN in comparison
with empirical correlations. Zheng et al. (2017) perforragtumerical analysis to study the heat
transfer and hydraulic characteristics in tubes equipp#d vortex rod inserts. The optimum
parameters have been obtained using the ANN and genetidthlgqGA) multiobjective opti-
mization method. Beigzadeh et al. (2014) applied the ANN @Adto model the heat transfer
performance in a channel with twisted tape vortex genesator

Using the nanofluid as an HTE procedure in the heat transf@pegent has recently been
frequently considered in experimental and numericaldiigne (Abdollahi-Moghaddam et al.,
2018; Baghban et al., 2019; Ghahdarijani et al., 2017). Bmofiuids are the fluids with nano-
meter-sized particles that can have more heat transfeficgeafs compared to the base fluid.
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Nanofluids are employed in various applications such aswatige radiators to obtain improved
thermal performance (Molana, 2017), electronics coolBahjraei and Heshmatian, 2018), and
mixed convection in enclosures (Izadi et al., 2018). A=k et al. (2019) investigated the
geometry effects of nanofluids in a wavy-walled microchamsat sink. Nagaraj (2019) pro-
vided a literature review about numerical and empiricaéaesh on the thermal performance in
microchannels for different nanofluids.

Recently, Guo (2020) provided a comprehensive review on Witk use of nanofluids, in
which the progress of ANN in nanofluid research was emphdskeat transfer improvement of
Al,Oz-water nanofluid in microchannels was numerically investtig by Nandakrishnan et al.
(2018). Pal and Bhattacharyya (2018) used a single-phadelnmostudy the nanofluid flow and
thermal characteristics in a channel with a blunt ribs wiley show that multiple numbers of
ribs led to an enhanced thermal performance but reducedraeater compared to a single rib.
Fard et al. (2019) investigated the effects of carbon ndestand water as working fluid on flow
and heat transfer characteristics in coiled tubes.

The neural networks can be applied for estimating thermatatdteristics in these systems
as functions of main operating conditions such as the cdrat@n of nanofluid. Abdollahi-
Moghaddam et al. (2018) investigated the effects of Cu@mwadnofluid concentrations on heat
transfer and pressure drop inside a horizontal tube. Therawmpntal data were used for devel-
oping an ANN to predict Nusselt number (Nu) in the heat exgeanThe suggested network
involves one hidden layer and eight hidden neurons. The rinatanodeling of a helically
coiled heat exchanger was performed by Baghban et al. (20&h8)water carbon nanofluid was
used as the working fluid. They examined the ANN, adaptiveafeazy inference system, and
least squares support vector machine (LSSVM) for modelihg.research demonstrates that the
LSSVM has the best prediction precision for the studiedssysMohammadi Ghahdarijani et al.
(2017) applied the ANN to estimate the performance of a cgamioling jacket with aqueous
Al,0O3 and CuO nanofluids.

The roughening of the tube’s inside surfaces leads to isargdneat transfer area. Moreover,
this method makes secondary flows, which lead to an increfagebmlence intensity as well
as heat transfer coefficient. The combination of corrugaibds and tube inserts as two HTE
methods were investigated in the literature (Nasr and Kh204 0; Zimparov, 2001). Zimparov
(2001) investigated the thermal and flow characteristicspimnally corrugated tubes equipped
with twisted tape inserts. Spirally ribbed channels andted tape inserts with various geome-
tries were investigated experimentally. Nasr and Khal@jl(® proposed ANNs for modeling a
heat exchanger including corrugated tubes equipped witltied/tape inserts. The related exper-
imental data (Zimparov, 2004a,b) was used for modelinggmtores. The model input variables
were geometrical parameters and Reynolds number (Re) andriets are friction factorf}
and Nu.

Very high heat transfer coefficients can be obtained usingnabination of the three men-
tioned HTE methods including tube insert, nanofluid, anduggated tube. However, it was noted
that all the HTE methods can lead to a further pressure labgiheat exchanger and also higher
required pumping power. In this investigation, the ANN antl &proaches were used for mod-
eling heat transfer and pressure drop characteristiceihdghat exchanger in which all three HTE
methods have been used. The ability of well-known ANNSs,udiig the multilayer perceptron
(MLP) and group method of data handling (GMDH) was challeh@éde input parameters were
volume fraction of nanopatrticle, twist ratios of twisteghéa and Re, and the output variables
were Nu andf. The nonlinear dependence between the input-output vesiaidicated that the
ANNSs can be suitable models to solve the problem. The apdi¢a points for determining the
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precise model were obtained from experimental work. Thalvkd developed model was intro-
duced as the objective functions of the GA multiobjectivéirajzation procedure. Finally, the
optimum parameters were proposed for designing the effitienmal system.

2. METHODOLOGY
2.1 Experimental Procedure and Data Collection

An experimental setup was applied to investigate the banefithe tube inserts, corrugated
tube, and nanofluid on heat transfer improvement. The tfter diagram and experimental
apparatus are schematically illustrated in Fig. 1. The rsatup apparatus include a heat ex-
changer with concentric tubes; cold and hot water tank;rfagal pumps; variac transformer;
and temperature, pressure, and flow measuring deviceslinglthermocouple, manometer, and
rotameter, respectively. The hot and cold fluid flowing wassed through the tube and shell,
respectively, and the heat transfer coefficients and prestnops were measured in different
operating conditions. The details related to the expertaigmocedure have been explained in
previous work (Wongcharee and Eiamsa-ard, 2012).

The experiments have been carried out on three tube insmitieia corrugated tube. The
aluminum twisted tapes with a thickness of 0.8 mm and lenf896 mm were employed in the
experiments. A twisted tape widtlv] of 9 mm and three twist lengthg) of 24 mm, 32 mm, and
48 mm were investigated. The twist length3 ére related to twist ratiog/(w) of 2.7, 3.6, and
5.3, respectively. The geometrical parameters @ndy were illustrated in Fig. 1. The studied
tube inserts were placed in a stainless steel corrugatedviith 1 mm wall thickness and an
inner diameter of 10 mm.

The heat transferred by cold or hot fluids can be obtained|msvia

Q = mcp(Tin - Tout) (1)

Corrugated tube equipped with twisted tape

Control
valve

Concentric tube . -

! ! heat exchanger ,” ! !

Flow
meter

Ball
valve

rg Pump 5

% Cold Water Tank Hot Water Tank

FIG. 1: Flow diagram of the experimental setup
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in which i is mass flow rate and, is specific heat capacity of fluid. The average heat transfer
rate of heat and cold fluid was considered in the calculatibhne overall heat transfer coefficient
(U) can be calculated from

Q=UA;ATryurD ()

The inner heat transfer coefficiertt;{ was obtained from the overall heat transfer coefficient

as follows: 1 1 A ln(d 0, A
3 (Ao — A4 7
U m T o T, T 3)

When the last three terms on the right side of Eq. (3) wereidern=d constant the equation
becomes

1 1
o= E + B 4)
The relation between Re and heat transfer coefficient is
h; = CRe" (5)
S0,
i—;—FB—ARe’mﬁ—b (6)
U CRe" -

This equation indicates that the plot betweeli Hnd Re ™ leads to a straight line with
the slope ofA and intercept a3 in 1/U axis. From Eqs. (5) and (6), the following equation is

obtained:
1

T 1U-B

The Nu of the flow in the tube is calculated as follows:
_ hyd;

Tk

in which d; is the diameter of the corrugated tube &nid thermal conductivity of fluid.
In addition, Re andf were calculated using the following equations:

u

2APd;

f=—==
pVeL

in which p is fluid density,u is dynamic viscosityA P is pressure drop, is length of the test
section, and’ is mean axial flow velocity.

CuO-water nanofluids with volume fractiong) of 0.3%, 0.5%, and 0.7% were prepared
to examine the effects of nanofluid concentration on heatsfea improvement. The mixture
properties for CuO-water nanofluid were calculated usiegdtiowing relations:

h; (7)

Nu 8)

Re

(9)

(10)

Pn=0pp+ (1 - @)py (11)

e Density:

in which the subscripts af, p, andf refer to the nanofluid, nanoparticle, and base fluid
(water), respectively.
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2.2 Developing Prediction Models

e Specific heat capacity (Pak and Cho, 1998):
(PCp)n = @(pCy)p +

e Thermal conductivity (Vajjha et al., 2010):

—@)(pCyp) s

kn  kp+ 2k +20(k, — ky)
kp + 2k — @k — ky)

k_f_

e Dynamic viscosity (Einstein, 1911):

Mo = 1y (14 2.50)

Beigzadeh & Eiamsa-ard

(12)

(13)

(14)

The basis of the neural networks is the imitation of the tdenected structure of brain cells
in order to model complex systems. This research attemptedrhpare two well-known ANNs
including MLP and GMDH to model a heat exchanger with thredeHiptions. The main effec-
tive parameters of the heat exchanger are volume fractioraobparticles ), twist ratios of
the twisted tapesy(/w), and Re. These variables were used as the input data fologevgthe
models. The important features in the heat exchangers arkdht transfer and pressure drop
characteristics. The improvementin heat transfer coefftsiis usually associated with a growth
in pressure drop and more energy is required for the fluid pognf herefore, two thermal and
hydraulic characteristics in the investigated heat transystem including Nu and were se-
lected as output data of the models. Separate models wes&leoed for estimating Nu anflto
achieve more accurate models. The model validity shoulddeegd using data points that were
not employed for training. Hence, a third of the used dataevaployed to validate the ANNs
and the rest was applied to develop the models. A total of b3@irékcal data points were pre-
pared for training and validating the MLP and GMDH neuralWwaks. The range of the input
and output variables was tabulated in Table 1. The follovdegation equations were used for

evaluation of the precision of the provided models:

MRE(%) = %Z

N

i=1

N

|7"z'*pz'|

)

(15)

MSE =

(Tz‘ *Pz‘)z
=1

2l

i

(16)

TABLE 1: The range of the used variables

Variable Minimum Maximum
Nu 61.37 287.69
f 0.12048 0.30246
Re 6259.4 24264.4
o (%) 0 0.7
y/w 2.7 5.3
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in which MRE and MSE represent the mean relative error anchregaared error, respectively.
N is the number of all data, is the predicted data by the model, anid the real (target) data.

In addition, due to the ease of use of empirical correlatibme power-law equations were
created using GA to compare with the neural network models.

2.2.1 MLP Neural Network

The ability of the MLP neural networks to recognize the noadir and complex problems en-
couraged many researchers to apply it for modeling (Ali.e28l15). The structural design of the
MLP neural network consists of three main layers includimayit, hidden, and output layer. The
layers arranged with simple processing elements are nasedde or neuron. The MLP-ANN
parameters are obtained using the back propagation dgorithe information related to the
input layer is fed forward recursively toward the hiddendiagnd then is delivered toward the
output layer. The MSE between the network response andt teayees is calculated at the net-
work output and is returned backward to correct the ANN patans. More hidden layers and
hidden neurons lead to complexity of the ANN and it can caweefitting of the model. There-
fore, in the work, the MLP-ANN with three layers that contaifmidden layer was developed.
The number of neurons in the hidden layer was optimized lay &nd error. In the mentioned
procedure, the effectiveness of the ANN is assessed foriffeeestht number of hidden neurons
and the most proper number is selected.

In the structure of the MLP network, all neurons are intermmied and the information is
transferred between the layers. The output of each neurdthanfinal output of the model is

calculated as follows:
y; = F, (Z W;iX; + b,,-) (17)

i=1

Y =F, 8> Wi |F (Z W;iX; + bj> + by, (18)
j=1 i=1
et —e 7
Fy(z) = prap— (19)
Fy(x) == (20)
p

in whichy; is the output from jth neuror; is the ultimate output of the MLP-ANNYX is ANN
input, andW andb are the model parameters (weights and biases)rnTdrem are the number
of neurons and the number of input variables, respectiVélg.subscripts, j, andk refer to the
input, hidden, and output layer, respectively.and £}, are the hyperbolic tangent sigmoid and
linear transfer functions, respectively, that are appleedbtain a normalized output from each
neuron. All employed data is normalized between zero and@iraprove the computational
process.

2.2.2 GMDH Neural Network

The GMDH is a polynomial artificial neural network, which dshe inductive self-organizing
approach to model the typically complex systems. The GMDHh\8impler interconnections
between layers and a programmed algorithm to structureyulesas originally presented by
Ivakhnenko (1971). The structure of the GMDH consists oksalvinterconnected layers and
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neurons. The output is calculated based on the VolterranBgbrov—Gabor polynomial equa-

tion:
Y (Xg, -ons Xn ao+Za,x.+ZZajxx,+ZZZa,,kx.x,xk+ (21)

i=1 j=1 i=1 j=1 k=1

where X(x, X2, ..., %) are the input variable vectors, A(a, ..., &) are the coefficient or weight
vectors, and@is the neuron bias. Generally, in the model structure, eaaham has five weights
and one bias. In the case of the GMDH in which the neurons hawérnputs, a polynomial of
maximum order two was used:

Y(Xi.X)) = @ + @i + 8X) + aXiXj + agx? + asX? (22)

where y is neuron output. Actually, the considered neurdputwf the MLP and GMDH neu-
ral networks [Egs. (17) and (22)] expressed the ultimataticriship between the output-input
variables. The constants of the equation or weights ardr@utaising least square regression
approaches (Ahmadi et al., 2015):

E = Z r;)/N — min (23)

in whichy; andr; are real and predicted values, respectivalyis the number of data.

In the GMDH structure, the input variables are consideredfifst layer of the network.
Since each neuron of the next layers has two inputs, the [m x ({)Y2] neurons are generated
in the second layer in which m is the number of variables. Adietermining the output of the
neurons [Eq. (22)] using regression methods, the neurotts higher precision are selected
and the weaker neurons are removed. This procedure is sitoithe principle of evolution.
The output of the neurons is inserted as the input of neurotisel next layer, which makes a
multilayer arrangement. The MSEs of the neurons in eachr Exgecompared with the previous
layer. If the deviation values in the new layer are more thandarlier layer, the addition of
layers is stopped. Finally, the neuron with higher accuiadetermined as the ultimate output
of the GMDH-ANN (Fujimoto and Nakabayashi, 2003).

2.2.3 GA-Based Correlations

The search method is based on the GA inspired by Darwiniavivelilaw and widely used
in engineering optimization problems (Mohanraj et al., 20The optimization process starts
with an initial random population (answers) and the gemanatontinued by processes including
parent selection, elitism, crossover, mutation, and mEptent. The iterative evolution procedure
continues until the desired response is obtained.

The following functional relationships are considered évelop two correlations between
the Nu andf as functions of Re, twist ratios of twisted tapg/{), and volume fraction of
nanoparticle @):

Nu = C;Re" (%)C (1+ ) (24)
F=cirdt (1) ar o (25)
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The MSE is employed as the objective function of the GA optatibn to obtain optimum
correlation constants (@nd C) as follows:

N
1 2
MSEn(C1, C, Ca, C) = 1 3 (NP — Nuf™?) (26)
i=1
1 2
MSE{(CY, 5. C5,C) = % D (£77 — £7°*) (27)
i=1

The GA procedure attempts to minimize the above objectinetians. The important de-
tails related to the used GA such as initial population, sower fraction, elite children, and
generations are reported in Table 2.

2.3 GA Multiobjective Optimization

In single-objective optimization, a system with one tanggaiable was considered for optimum
designing. However, in real engineering equipment, theeenaany design factors that need
trade-offs among them. The target factors are usually aediwith each other, and the mul-
tiobjective optimization is employed with respect to aljextiives. Pareto solutions are a set of
answers for a multiobjective problem. Several practicgliegering problems involve detecting
the minimum or maximum of multiple objectives simultandgughere is no single solution to
optimize multiple goals at once, therefore in multiobjeetoptimization, the target is to obtain
a set of nondominated answers known as Pareto optimal@atutThe GA is a global optimiza-
tion procedure, which is appropriate to search the diffelPameto optimum solutions for solving
multiobjective optimization problems. Multiobjective G@ptimization has more abilities than
the classical techniques in terms of the optimizing protslé@mwhich the objective functions
are nonlinear, nondifferential, or discontinuous (Konakle 2006; Sanaye and Dehghandokht,
2011).

In the study, the GA was used to determine the Pareto se¢ddiathe heat transfer and pres-
sure drop in a heat exchanger including tube insert and nadollhe multiobjective optimiza-
tion based on GA was applied to find optimum parameters{Re, and) in the investigated
thermal system, which led to the minimizing pressure drapr(p power) and the maximizing
heat transfer rate. Regarding objective functions thatn@remized in the GA multiobjective
optimization, the following forms of the equations were sidiered objectives:

O (Re 1/.¢) = 1+1Nu (%)
OF; (Re 2.¢) = f (29)

TABLE 2: Details of the genetic algorithm optimization method

Number of initial population chromosomes 100
Crossover fraction 0.8

Number of elite children 2
Number of generations 300
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The procedure was carried out by 400 generations and tled jmitpulation number was 100
chromosomes. The optimization process terminates onceutmder of generation reaches the
ultimate value.

3. RESULTS AND DISCUSSION

The main characteristics of a heat exchanger that benedits HTE options including tube
insert, corrugated tube, and nanofluid were modeled usingptswerful models. The ability of
two subcategories of ANNs, MLP and GMDH, were investigatedredict Nu andf in the heat
exchanger. A data set that includes 132 experimental dasagathered and divided into two
parts for training and validating the models. To assess theeivalidation, all 132 data points
were randomly divided into two groups. The first data secftaro-thirds of data points) was
used to train the models and the second data section (rergalata) was applied to validate the
developed models. This procedure leads to minimizing tla@cés to have a biased data set and
increases the chances to have a representative data et fosihing data.

The volume fraction of nanoparticles of = 0.7%, 0.5%, and 0.3%; twist ratios of the
twisted tapes of;/w = 5.3, 3.6, and 2.7; and Re range of Re6259-24,264 were employed
as input data for modeling. Changing the mentioned opegyatimditions led to simultaneous
variations in heat transfer rate and friction charactiessh the investigated system. The detailed
experimental analysis related to the effects of the ingagtid variables on the heat exchanger in
which it was expressed (Wongcharee and Eiamsa-ard, 20h8)adcurate model provides the
possibility to choose optimal conditions. In the presendgt two MLP and also two GMDH
neural networks were developed to evaluate Nu #énd the studied heat exchanger. Finally,
the more accurate model for predicting Nu ghavas used for appropriate objective functions
in a multiobjective GA optimization. The detailed resukated to the models are explained in
subsequent sections.

3.1 MLP-ANN Results

Figure 2 shows the arrangement of the MLP-ANN architecthat includes the input, hidden,
and output layers. The various structures of the MLP-ANNemeramined to acquire the best
model via the trial-and-error approach. The resulted MSgHe various numbers of neurons
of the hidden layer was presented in Fig. 3. According to theré, the ANNs with eight and
nine neurons were selected as optimum networks for pradittie Nu andf, respectively. The
MRE and MSE of 0.196% and 0.111, respectively, were caledl&r the Nu model, and the
values of 0.063% and 3.97 x 1® were obtained for the’ model, respectively. In addition,
the deviations of the test data set were calculated and thE M#Rues of 0.169% and 0.04%
were obtained for prediction of Nu anf] respectively. The ability of the developed model to
estimate the test data and also the reasonable differemsedre deviations of the predicted
train and test data set proved the validity of the model. Téréopmance of other algorithms for
training the MLP-ANN was evaluated and the error values weperted in Table 3. The similar
modeling procedure was carried out to specify the modetsitra such as the optimum number
of hidden neurons. The results indicate the superioritheltevenberg—Marquardt algorithm in
comparison to other learning algorithms. The obtainedmatars of the MLP neural networks
were tabulated in Tables 4 and 5. The reported weights arsg 9@V, b) should be inserted in
Eq. (18) to obtain the predicted output of the models. Tha gaints were normalized before
the modeling process; the real output can be found usingttoaving relation:
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FIG. 3: Deviations of the MLP-ANNSs versus the number of neurons @ttlidden layer for prediction of
(a) Nu and (b)f

Real value= [Normalized datéMaximum value— Minimum valug] + Minimum value (30)

in which the maximum and minimum values were reported in &4bl

3.2 GMDH-ANN Results

In the present work, two GMDH-Type-ANN were developed tamsate target variables (Nu and
f) based on empirical data. Figure 4 shows the two structetated to the developed GMDH
neural networks for predicting Nu anfl These arrangements were optimized to predict the
target data with high precision. As can be seen in Fig. 4, Botlctures contain two hidden
layers. The related genome representations of the dewklopdels for estimating Nu anflare
X1X3X1X1XoX3X1X1 and X XoX3X3XoX3X1X1, respectively, wherex X, and % placed for Reynolds
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TABLE 3: Evaluation of the different training algorithms for moagjithe Nu andf

Nu f
Number of Number of
Training algorithm optimum | MRE (%) | optimum | MRE (%)
hidden hidden
neurons neurons
Levenberg—Marquardt 8 0.196 9 0.063
Conjugate gradient back propagation 6 271 9 3.41
with Powell-Beale restarts
Bayesian regularl_zat|on 6 14.41 8 18.39
back-propagation
Batch training v_wth weight and biag 7 1.24 8 117
learning rules
Grad|_ent descent with adapt_lve 7 10.51 9 792
learning rate back propagation
Gradient descent Wlth_momentum 5 17.39 8 17.71
back propagation

TABLE 4: The MLP-ANN parameters for prediction of Nusselt number

Neuron | Wj; — — b; bi, = 0.7108
— Re @ (%) y/w — Wi
1 -1.0191| 4.7141 | -4.6180| 0.9495 -0.0176
2 —0.2997| 4.1446 | 4.5960 | —-4.7741| -0.0327
3 0.8172 | 0.4517 | —0.2901| -1.1104 0.5949
4 2.4987 | 1.6162 | —2.5877| —3.9685 0.0728
5 0.2668 | —0.5915| —4.1661| —0.3853 0.1397
6 1.2074 | 0.1915 | 0.0390 | —0.1383 0.2769
7 —3.6278| —1.2430| 5.3412 | 0.2888 0.0035
8 3.0564 | —0.5738| 2.0421 | 0.1483 0.0322

number (Re), volume fraction of nanoparticle)( and twist ratios of twisted tapey (w), re-
spectively. The polynomial expression of the GMDH-ANNSs li®wn in Tables 6 and 7. These
polynomial relations can be used for estimating the Nu Arad a function of input variables.
The MRE values of all predicted data points were obtained 258% and 1.309% for Nu and
f models, respectively. In addition, the MREs of 0.780% ai3®% were calculated for the test
data set. Therefore, the modeling procedure and preserdgddlsare validated to predict the
output variables.

3.3 GA-Based Correlations

Two classical power-law correlations [Egs. (24) and (25¢fevconsidered to estimate target
variables (Nu and’) due to the availability and high usage speed. The GA seantintque was
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TABLE 5: The MLP-ANN parameters for prediction of friction factor

Neuron Wi — — b; bi, = 0.7301
— Re @ (%) y/w — Wi
1 2.3705 | —3.1972| -0.7069| —2.1029 0.0511
2 —0.1367| 11.2831| —-2.2876| —7.9671 0.0687
3 —3.2383| 1.8736 | 0.3915 | 1.4413 -0.0190
4 —3.8067| —0.4611| —2.4525| 2.7763 0.0137
5 1.4123 | 0.2904 | 1.5281 | —2.0835| -0.1573
6 0.1303 | 3.8622 | —0.2928| -1.6097 0.1999
7 1.7123 | 0.4714 | —2.8256| 0.7500 -0.0751
8 3.6935 | —0.7022| 0.0833 | 0.7412 -0.1437
9 —1.4085| -0.2964| —-3.0117| 0.2228 0.2312

X1(Re)

FIG. 4: Structure of the developed GMDH-type neural networks fdNa and (b)f model

TABLE 6: Polynomial equations related to the GMDH-ANN for Nu preitint

y; = 156.178+ 0.01064% — 61.226% — 0.00092%X3 + 3.04 x 10~ %% + 7.1619%
Y, = 324.90+ 52.036% — 80.2288% — 8.6371%x3 + 56.933% + 7.6199%
3 = 5.15204 0.73710y + 0.00196x — 3.24 x 10 °y,x; + 0.00241y — 1.00 x 10 'x}
2, = 3.8159- 0.19583y, + 0.00127% + 4.26x 10 °y,X; + 0.00014g — 2.11 x 10 °x3
F = Nu = 0.71297- 0.09395z + 1.08473 + 0.01683zz, — 0.00820% — 0.00855%

used to obtain the best correlation constants. After usiegekperimental data, the following
equation achieves for Nu prediction:

Nu = 0.133R&7 (%) RTISLE (31)

The calculated MRE and MSE of the above correlation are 2.2486.4.67, respectively. In
addition, a correlation related to tlfewas proposed as follows:

—0.312
f=1902Re®? (L) T (14 )% (32)

The MRE and MSE of 2.75% and 3.8 x 10were calculated for th¢ correlation.
The ranges of the parameters used in Egs. (31) and (32) wesded in Table 1.
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TABLE 7: Polynomial equations related to the GMDH-ANN féprediction
y; = 0.21712- 6.11 x 10 ®x; + 0.08929% — 8.39 x 10~ "x1x»
+1.14 x 10 %2 + 0.05475%
y, = 0.30877+ 0.08325% — 0.06738% + 0.00716x%x3 + 5.08 x 10~ °x3 + 0.00631%
z) = 0.19796+ 0.648610y — 0.07296% — 0.01205yx3 + 1.0807y + 0.00744%
Z, = 0.11478+ 0.25988y — 4.06 x 10 °x; — 1.85 x 107 °y,x; + 2.8152%
+1.46 x 107 1%2
F = f = 0.00088+ 4.1490z — 3.1516z + 1233322, — 71447Z — 51.8772%

3.4 Compare the Accuracy of the Models

The prediction performance of the investigated models wagpared. Table 8 reports the devi-
ation values of the MLP and GMDH neural networks and GA-basedklations for predicting
Nu and f. The errors related to the prediction of training, testiagd overall data points are
reported in the table. In general, the performances of tleetinodels are acceptable. The neural
networks appear more accurate in comparison with the GAetadions. However, the results
indicate the superior performance of the MLP neural netwespecially about the prediction
of f.

3.5 GA Multiobjective Optimization

The higher heat transfer coefficients for the investigatedt lexchanger are associated with
higher f and the importance of optimization is determined. The dlolpéimal results can be
obtained using the GA procedure after searching for a patie@tearch space. The operating
parameters including Rg/w, ande according to the studied ranges (reported in Table 1) were
optimized using GA multiobjective optimization to achiawaximum Nu and minimungf. For

this reason, the objective functions of O&nd OF, [Eqgs. (28) and (29)] were introduced to the
GA. In this study, the more accurate predictive model, MLRM\ was used to calculate the
objective function values, and the GA multiobjective op#ation is adopted in searching for
optimum parameters based on the estimated fitness valuegurpose of the used optimization

TABLE 8: Prediction accuracy of the employed models

. Nu — f —
Model Stage |Data points MRE (%) |MSE [MRE (%) VSE
Training 88 0.169 [0.086 0.040 [1.21x10°8
MLP-ANN Testing 44 0.250 [0.162 0.112 [9.65x10°¢
Overall 132 0.196 [0.111 0.063 [3.97 x10°¢®
Training 88 0.687 [1.865 1.268 [1.16x10°
GMDH-ANN Testing 44 0.780 [3.013 1.390 [1.46x10°
Overall 132 0.718 [2.248 1.309 [1.26x10°
GA-based correlation
[Egs. (31) and (32)] — — 2.243 |14.67 2.747 |3.80x10°
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method is to achieve a trade-off between the heat transédficent and friction characteristic.
The optimum answers (Pareto set) of the system generatdtblfiyA multiobjective optimiza-
tion and the corresponding Nu afidvere shown in Figs. 5(a) and 5(b), respectively. Each point
in the Pareto set presented two values of the objectivesitbat global optimal result and there
is no point superior to the other. The conflict changes of éingett variables prove the need for
optimization.

Three desired parameters for optimization (Réay, andg) related to the Pareto set points
were shown in Fig. 6. As seen in Fig. 6(a), the obtained optimalues of Re were approxi-
mately constant at its upper limit due to ideal values of Nd #rnn higher values of Re. Fig-
ure 6(b) illustrates the optimal values of thew in terms of Nu. As expected, the/w decreases
with increasing Nu in higher values gf/w. However, there is a constant trend fptw at its
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FIG. 5: (a) The obtained Pareto set of the objective functions apddiresponding Nu and values

6
30000
24000 - 06 000 o6 ®e e eom ccece sens ? H
£ [}
2 18000 54 ﬁ
i
%3
12000 1 (X3 Tr T XK1 X
5200 21'0 170 190 210 230 250 270 290
150 170 190 210 230 250 270 290 3 P ? : & 2
u
(a) (b)
08
'
0.6 é it
04 : 53
l!
02 '
2
<
0 o e el «°
150 170 190 210 3, 230 250 270 290

(©)

FIG. 6: The values of the operating variables (B¢w, ande) related to the points on the Pareto set
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low values versus increasing Nu. The optimum values ofgha terms of Nu were shown in
Fig. 6(c). The figure indicates that the nanomaterial is neffiective at lower concentrations.

The optimization results indicate that higher Re valued keaideal Nu andf. Therefore,
design parameters have to be determined in a given Re. ThmedtPareto set at different Re
is shown in Fig. 7. The figure shows the significant effect efffe on the optimum answers. In
addition, Table 9 reports some of the selected optimum arssaved related Nu anfl at various
Re. More geometrical parameters can be obtained using thenGliiobjective optimization
method for different Re. Each value reported in the table alztsined based on a trade-off
between Nu and. The designing of the heat exchanger and selecting the rdesigameters
(Re,y/w, and) was performed based on the importance of Nu And

4. CONCLUSIONS

This study introduced and compared three well-known ANNbégues including MLP, GMDH,
and GA. The heat exchanger, which benefits three HTE opttahs {nsert, corrugated tube, and
nanofluid), has been modeled successfully by these teabsiigestimate the thermal and flow
characteristics. The Nu anflwere modeled as functions of mainly influencing parameters i
cluding volume fraction of nanoparticlep], twist ratios of twisted tapey(w), and Re. The
MLP-ANNs with three layers and eight and nine neurons in tigglén layer were proposed
for Nu and f prediction, respectively. The polynomial equations edato the two developed
GMDH-ANNSs were presented. In addition, two GA-based catiehs in the form of the power-
law equation were developed for predicting the target em Evaluating the prediction accu-
racy of the model outputs indicates that all three approaehe precise and reliable. However,
the lower deviation values related to the MLP-ANN indicdtis technique is proper to predict
target variables in the investigated heat exchanger.

The simultaneous use of twisted tape and nanofluid increhsesonvective heat transfer
and pressure drop. The increasing CuO concentration arstetivratio of twisted tape lead

to an increase in the Nu anfl The enhancement of the convective heat transfer is a useful

effect but increasing the pressure drop follows with moredeel pumping power. Therefore

0.35

®Re=7000 ¢Re=10000 XRe=15000 A Re=20000 XRe=24000

0.15 4 ko x X N

0.1 : - - -
50 100 150 200 250 300
Nu

FIG. 7: Optimum answers (Pareto set) in different Re

Journal of Enhanced Heat Transfer



Genetic Algorithm Multiobjective Optimization 139

TABLE 9: A selection of the optimum results

Re | ¢(%) | y/w | Nu f

7000 | 0.0030| 5.29 | 61.78 | 0.1574
7000 | 0.0126] 3.68 | 73.27 | 0.1776
7000 | 0.0940| 2.74 | 86.80 | 0.2075
7000 | 0.2286| 2.75 | 90.91 | 0.2275
7000 | 0.4124| 2.78 | 96.08 | 0.2541
7000 | 0.6088| 2.75 | 101.91 0.2831
7000 | 0.6873| 2.72 | 104.65| 0.2955
10000 | 0.0074| 5.27 | 81.87 | 0.1461
10000 | 0.0160| 4.19 | 91.28 | 0.1580
10000 | 0.0403| 3.88 | 95.57 | 0.1650
10000 | 0.1543| 2.91 | 114.06| 0.1964
10000 | 0.3423| 2.76 | 124.49| 0.2256
10000 | 0.6042| 2.78 | 133.79| 0.2600
10000 | 0.6940| 2.74 | 137.84| 0.2730
15000 | 0.0033| 5.28 | 112.01| 0.1329
15000 | 0.0469| 4.62 | 121.32| 0.1435
15000 | 0.0110| 3.59 | 134.27| 0.1509
15000 | 0.1193| 2.79 | 157.49| 0.1773
15000 | 0.2418] 2.75 | 165.68| 0.1938
15000 | 0.4703| 2.73 | 178.46| 0.2226
15000 | 0.6959| 2.73 | 189.70| 0.2501
20000 | 0.0029| 5.29 | 140.13| 0.1246
20000 | 0.0210| 3.72 | 166.03| 0.1411
20000 | 0.0482| 3.02 | 184.68| 0.1538
20000 | 0.0873| 2.74 | 196.12| 0.1633
20000 | 0.2944| 2.76 | 210.63| 0.1877
20000 | 0.4697| 2.75 | 222.48| 0.2082
20000 | 0.6997| 2.70 | 238.68| 0.2356
24000 | 0.0020| 5.29 | 161.36| 0.1195
24000 0.0281]| 4.17 | 182.13] 0.1315
24000 0.0110] 3.19 | 204.62| 0.1410
24000 | 0.0803| 2.71 | 226.75| 0.1565
24000 0.1591] 2.72 | 233.03| 0.1654
24000 | 0.3815| 2.71 | 251.67| 0.1911
24000 | 0.5641| 2.73 | 264.19| 0.2107
24000 0.7000| 2.70 | 275.23| 0.2263

the multiobjective optimization is essential for the invgated system. The optimum operating
parameters of the investigated heat exchanger that ledraale-off between heat transfer and
friction characteristics were proposed using the GA mhJgotive optimization. Each value of
the operating conditions can be selected according to thjeqirpurpose.
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