Abonnement à la biblothèque: Guest
Portail numérique Bibliothèque numérique eBooks Revues Références et comptes rendus Collections
Telecommunications and Radio Engineering
SJR: 0.202 SNIP: 0.2 CiteScore™: 0.23

ISSN Imprimer: 0040-2508
ISSN En ligne: 1943-6009

Volumes:
Volume 78, 2019 Volume 77, 2018 Volume 76, 2017 Volume 75, 2016 Volume 74, 2015 Volume 73, 2014 Volume 72, 2013 Volume 71, 2012 Volume 70, 2011 Volume 69, 2010 Volume 68, 2009 Volume 67, 2008 Volume 66, 2007 Volume 65, 2006 Volume 64, 2005 Volume 63, 2005 Volume 62, 2004 Volume 61, 2004 Volume 60, 2003 Volume 59, 2003 Volume 58, 2002 Volume 57, 2002 Volume 56, 2001 Volume 55, 2001 Volume 54, 2000 Volume 53, 1999 Volume 52, 1998 Volume 51, 1997

Telecommunications and Radio Engineering

DOI: 10.1615/TelecomRadEng.v68.i17.90
pages 1577-1588

APPLIED RADIO PHYSICS
Displacement Sensors Based on Microwave Circular Cylindrical Resonators

P. I. Zabolotny
Institute of Technical Mechanics National Academy of Sciences of Ukraine 5, Lyashko-popel St., Dnepropetrovsk, 49005
Ye. N. Privalov
Institut of Technical Mechanics of National Academy of Science of Ukraine

RÉSUMÉ

Features of application of displacement sensors based on hollow cylindrical resonator, coaxial one and cylindrical coaxial one with step change of the internal conductor shape have been investigated. Behavior of resonance frequency tuning in the circular cylindrical resonators under variation of coordinates of their movable elements has been examined.

RÉFÉRENCES

  1. Polivka, J., An Overview of Microwave Sensor Technology.

  2. Victorov, V.A., Lunkin, B.V., and Sovlukov, A.S., Radio wave measurements of technological process parameters.

  3. Billeter, T.R., Brown, D.P., and Spear, W.G., Pressure measurement instrument for liquid metal reactors.

  4. Nitka, E.F., and Ishii, T.K., Microwave ferrite acceleration sensor.

  5. Panchenko, A.Yu., Determination of frequency shift in cavity resonators under acoustic perturbation of filling medium.

  6. http://hittite.com/products/index.html/category/59.

  7. http://www.minicircuit.com.

  8. Goldshtein, L.D., Electromagnetic fields and waves.

  9. Fedorov, N.N., Electrodynamics Fundamentals.

  10. Grigor’ev, A.D., and Yankevich, V.B., Resonators and resonator slowing-down microwave systems. Numerical technique of calculation and design.


Articles with similar content:

PROPERTIES OF THE TUNABLE WAVEGUIDE-DIELECTRIC RESONATOR WITH THE INCREASED Q-FACTOR AT THE MILLIMETER-WAVE BAND
Telecommunications and Radio Engineering, Vol.74, 2015, issue 16
I. G. Skuratovskiy, S. P. Martynyuk, A. P. Motornenko, R. I. Bilous
ELLIPSOIDAL PROPERTIES OF THE REFLECTION FACTORS FROM A THIN-LAYER PERIODIC SEMICONDUCTOR- DIELECTRIC STRUCTURE IN A MAGNETIC FIELD
Telecommunications and Radio Engineering, Vol.71, 2012, issue 13
I. V. Fedorin, A. A. Bulgakov
COMPRESSION OF ELECTROMAGNETIC PULSES IN AN ASYMMETRIC DIELECTRIC WAVEGUIDE
Telecommunications and Radio Engineering, Vol.78, 2019, issue 2
M. V. Maiboroda, V. L. Pazynin
RADIALLY TWO‐LAYER SPHERE AS A SENSOR OF DIELECTRIC CHARACTERISTICS OF A LIQUID INTO WHICH IT IS SUBMERGED
Telecommunications and Radio Engineering, Vol.69, 2010, issue 18
O. A. Suvorova, A. Ya. Kirichenko, Yu. V. Prokopenko, Yu. F. Filippov
WAVEGUIDE-COAXIAL RESONATOR WITH WIDE-RANGE FREQUENCY TUNING AND INCREASED Q-FACTOR
Telecommunications and Radio Engineering, Vol.75, 2016, issue 10
I. G. Skuratovskiy, A. P. Motornenko, R. I. Bilous, O. I. Khazov