Abonnement à la biblothèque: Guest
Portail numérique Bibliothèque numérique eBooks Revues Références et comptes rendus Collections
Telecommunications and Radio Engineering
SJR: 0.202 SNIP: 0.2 CiteScore™: 0.23

ISSN Imprimer: 0040-2508
ISSN En ligne: 1943-6009

Volumes:
Volume 78, 2019 Volume 77, 2018 Volume 76, 2017 Volume 75, 2016 Volume 74, 2015 Volume 73, 2014 Volume 72, 2013 Volume 71, 2012 Volume 70, 2011 Volume 69, 2010 Volume 68, 2009 Volume 67, 2008 Volume 66, 2007 Volume 65, 2006 Volume 64, 2005 Volume 63, 2005 Volume 62, 2004 Volume 61, 2004 Volume 60, 2003 Volume 59, 2003 Volume 58, 2002 Volume 57, 2002 Volume 56, 2001 Volume 55, 2001 Volume 54, 2000 Volume 53, 1999 Volume 52, 1998 Volume 51, 1997

Telecommunications and Radio Engineering

DOI: 10.1615/TelecomRadEng.v77.i9.30
pages 769-786

DENOISING OF MULTICHANNEL IMAGES WITH NONLINEAR TRANSFORMATION OF REFERENCE IMAGE

S. K. Abramov
Department of Transmitters, Receivers and Signal Processing, National Aerospace University (Kharkiv Aviation Institute), 17 Chkalov St., Kharkiv, 61070, Ukraine
V. V. Abramova
National Aerospace University (Kharkiv Aviation Institute), 17, Chkalov St., Kharkiv, 61070, Ukraine
V. V. Lukin
National Aerospace University (Kharkiv Aviation Institute), 17 Chkalov St., Kharkiv, 61070, Ukraine
Karen O. Egiazarian
Tampere University, Tampere, 33720, Finland

RÉSUMÉ

It has been demonstrated recently that efficiency of filtering a noisy component image of a multichannel image can be sufficiently improved under condition that the multichannel image has almost noise-free component image(s) that possess high correlated with the noisy component image used as reference. High correlation and practical absence of the noise are only pre-requisites for efficient filtering of the noisy image using reference. Other criteria of similarity than cross-correlation factor are important. In this paper we show how it is possible to make the reference image very "close" to the noisy one by exploiting nonlinear transformation. Moreover, it is demonstrated that the proposed approach can be useful for denoising images corrupted by signal-dependent noise which is often the case for multichannel remote sensing data.


Articles with similar content:

DENOISING OF MULTICHANNEL IMAGES WITH REFERENCES
Telecommunications and Radio Engineering, Vol.76, 2017, issue 19
V. V. Lukin, S. K. Abramov, J. T. Astola, Karen O. Egiazarian, V. V. Abramova
DCT-BASED DENOISING IN MULTICHANNEL IMAGING WITH REFERENCE
Telecommunications and Radio Engineering, Vol.75, 2016, issue 13
V. V. Lukin, S. K. Abramov, J. T. Astola, Karen O. Egiazarian, V. V. Abramova
AN AUTOMATIC APPROACH TO LOSSY COMPRESSION OF AVIRIS HYPERSPECTRAL DATA
Telecommunications and Radio Engineering, Vol.69, 2010, issue 6
N. N. Ponomarenko, M. S. Zriakhov, A. Kaarna
BUILDING DETECTION USING PROCESSING OF MONOCHROMATIC EARTH OBSERVATION IMAGE
Telecommunications and Radio Engineering, Vol.77, 2018, issue 3
А. N. Gorobets
AN APPROACH TO PREDICTION OF SIGNAL-DEPENDENT NOISE REMOVAL EFFICIENCY BY DCT-BASED FILTER
Telecommunications and Radio Engineering, Vol.73, 2014, issue 18
Benoit Vozel, Kacem Chehdi, A. Naumenko, A. Rubel, V. V. Lukin, S. K. Abramov, J. T. Astola, Karen O. Egiazarian, S. S. Krivenko