Abonnement à la biblothèque: Guest
Portail numérique Bibliothèque numérique eBooks Revues Références et comptes rendus Collections
Telecommunications and Radio Engineering
SJR: 0.202 SNIP: 0.2 CiteScore™: 0.23

ISSN Imprimer: 0040-2508
ISSN En ligne: 1943-6009

Volumes:
Volume 78, 2019 Volume 77, 2018 Volume 76, 2017 Volume 75, 2016 Volume 74, 2015 Volume 73, 2014 Volume 72, 2013 Volume 71, 2012 Volume 70, 2011 Volume 69, 2010 Volume 68, 2009 Volume 67, 2008 Volume 66, 2007 Volume 65, 2006 Volume 64, 2005 Volume 63, 2005 Volume 62, 2004 Volume 61, 2004 Volume 60, 2003 Volume 59, 2003 Volume 58, 2002 Volume 57, 2002 Volume 56, 2001 Volume 55, 2001 Volume 54, 2000 Volume 53, 1999 Volume 52, 1998 Volume 51, 1997

Telecommunications and Radio Engineering

DOI: 10.1615/TelecomRadEng.v55.i2.10
15 pages

The Space-and-Time Structure of Microwave Signals Propagating Above the Sea within the Optical Visibility Range

A. S. Bryukhovetsky
A. Usikov Institute of Radio Physics and Electronics, National Academy of Sciences of Ukraine
V. A. Kabanov
O.Ya. Usikov Institute for Radio Physics and Electronics, National Academy of Sciences of Ukraine, 12, Academician Proskura St., Kharkiv 61085, Ukraine
G. G. Maikov
A. Usikov Institute of Radio Physics and Electronics, National Academy of Sciences of Ukraine 12, Academician Proskura St., Kharkov 61085, Ukraine
V. B. Sinitski
A. Usikov Institute of Radio Physics and Electronics, National Academy of Sciences of Ukraine
Ivan S. Turgenev
A. Usikov Institute of Radio Physics and Electronics, National Academy of Sciences of Ukraine 12, Academician Proskura St., Kharkov 61085, Ukraine
Stanislav I. Khomenko
A.Ya. Usikov Institute for Radiophysics and Electronics of the National Academy of Sciences of Ukraine 12, Academician Proskura St., Kharkiv 61085, Ukraine

RÉSUMÉ

Some experimental and theoretical results are presented, concerning the space-and-time field structure of the radio waves at the wavelength 35 cm, 4 cm and 0.8 cm propagating above water surfaces. Measured height profiles of the field strength within layers up to 23 m (pathlength 8 km) or 92 m (pathlength 21 km) showed distortions in the field fringe pattern due to refraction in the near-water atmospheric layer. The effective refractivity gradient measured during summer and fall periods shows a distribution close to the normal law with the median value corresponding to an enhanced refraction.


Articles with similar content:

Free Surface Deformation in Oscillatory Thermocapillary Convection in a Rectangular Cavity
International Heat Transfer Conference 12, Vol.16, 2002, issue
Eugenia T. Tudose, Masahiro Kawaji
MEASURED AND ESTIMATED SOLAR RADIATION IN THE ARABIAN GULF COAST
Energy and the Environment, 1999, Vol.0, 1998, issue
A. Aksakal, Shafiq-ur-rehman
Diagnostics of Refractive Properties of the Atmospheric Surface Layer by Contact and Non-Contact Methods
Telecommunications and Radio Engineering, Vol.55, 2001, issue 2
Ivan S. Turgenev, V. B. Sinitski, G. G. Maikov, Stanislav I. Khomenko
PIV MEASUREMENTS OF SURFACE FLOWS IN LABORATORY WAVE BASINS
Journal of Flow Visualization and Image Processing, Vol.16, 2009, issue 1
Jack A. Puleo, Liang He
MONITORING THE PEAK FREQUENCY OF SCHUMANN RESONANCE AND ANALEMMA
Telecommunications and Radio Engineering, Vol.74, 2015, issue 9
A. P. Nickolaenko