Abonnement à la biblothèque: Guest
Portail numérique Bibliothèque numérique eBooks Revues Références et comptes rendus Collections
Telecommunications and Radio Engineering
SJR: 0.202 SNIP: 0.2 CiteScore™: 0.23

ISSN Imprimer: 0040-2508
ISSN En ligne: 1943-6009

Volumes:
Volume 78, 2019 Volume 77, 2018 Volume 76, 2017 Volume 75, 2016 Volume 74, 2015 Volume 73, 2014 Volume 72, 2013 Volume 71, 2012 Volume 70, 2011 Volume 69, 2010 Volume 68, 2009 Volume 67, 2008 Volume 66, 2007 Volume 65, 2006 Volume 64, 2005 Volume 63, 2005 Volume 62, 2004 Volume 61, 2004 Volume 60, 2003 Volume 59, 2003 Volume 58, 2002 Volume 57, 2002 Volume 56, 2001 Volume 55, 2001 Volume 54, 2000 Volume 53, 1999 Volume 52, 1998 Volume 51, 1997

Telecommunications and Radio Engineering

DOI: 10.1615/TelecomRadEng.v78.i5.40
pages 419-427

ANALYSIS OF THE IMPLEMENTATION COMPLEXITY OF CRYPTOSYSTEM BASED ON THE SUZUKI GROUP

G. Z. Khalimov
Kharkiv National University of Radio Electronics, 14 Nauka Ave, Kharkiv 61166, Ukraine
E. V. Kotukh
Kharkiv National University of Radio Electronics, 14 Nauka Ave, Kharkiv 61166, Ukraine
Yu. O. Serhiychuk
Kharkiv National University of Radio Electronics, 14 Nauka Ave, Kharkiv 61166, Ukraine
O. S. Marukhnenko
Kharkiv National University of Radio Electronics, 14 Nauka Ave, Kharkiv 61166, Ukraine

RÉSUMÉ

Implementations for cryptosystems of finite groups based on the logarithmic signature and covering are considered. A logarithmic signature is exemplified by a permutation group with the asymmetry of encryption and decryption algorithms. Decryption of the improved cryptosystem MST3 in Suzuki 2-group with the order of the group q2 is given. The Suzuki 2-group use has a significant advantage in implementation, due to the large center and simple group operation. Cost estimates for encryption, decryption and comparison with the RSA algorithm are obtained.

RÉFÉRENCES

  1. Wagner, N.R. and Magyarik, M.R., (1984) , A Public Key Cryptosystem Based on the Word Problem, Advances in Cryptology. Proceedings of CRYPTO, pp. 19-36, edited by G.R. Blakley and D. Chaum, Lecture Notes in Computer Science 196. Berlin: Springer, 1985.

  2. Wagner, N.R., (1984) , Searching for Public-Key Cryptosystems, Proceedings of the Symposium on Security and Privacy (SSP ’84), pp. 91-98, Los Alamitos, CA: IEEE Computer Society Press.

  3. Magliveras, S.S., (1986) , A Cryptosystem from Logarithmic Signatures of Finite Groups, Proceedings of the 29th Midwest Symposium on Circuits and Systems, pp. 972-975. Amsterdam: Elsevier Publishing Company.

  4. Lempken, W., Magliveras, S.S., Tran van Trung, and Wei, W. (2009), A public key cryptosystem based on non-abelian finite groups, J. of Cryptology, 22, pp. 62-74.

  5. Higman, G., (1963) , Suzuki 2-groups.Ill, J. Mathematic, 7, pp. 79-96.

  6. Pavol Svaba, (2011) , Covers and logarithmic signatures of finite groups in cryptography, Dissertation, Bratislava, Slowakische Republik.


Articles with similar content:

Optimization of Processes of Robust Control of Quadcopter for Monitoring of Sea Waters
Journal of Automation and Information Sciences, Vol.51, 2019, issue 2
Victor L. Timchenko , Denis O. Lebedev
Forecasting of Hydrochemichal Regime of the Lower Dnieper Section using Neurotechnologies
Hydrobiological Journal, Vol.51, 2015, issue 3
O. E. Dovbysh, V. I. Pichura, Yu. V. Pilipenko, F. N. Lisetskiy
Numerical Method for Solving the Diffusive Lotke−Volterra Model with Discontinuous Coefficients for the Problem of Companies Competition
Journal of Automation and Information Sciences, Vol.44, 2012, issue 4
Andrey A. Yefimenko, Vitally V. Akimenko
INFORMATION SORTING BY A DATA DECODING METHOD
Telecommunications and Radio Engineering, Vol.71, 2012, issue 16
S. S. Shevelev, V. P. Dobritsa
Algorithm for Solving a Continuous Problem of Optimal Partitioning with Neurolinguistic Identification of Functions in Target Functional
Journal of Automation and Information Sciences, Vol.50, 2018, issue 3
Elena M. Kiseleva, Olga M. Prytomanova , Sergey V. Zhuravel