Abonnement à la biblothèque: Guest
Portail numérique Bibliothèque numérique eBooks Revues Références et comptes rendus Collections
Telecommunications and Radio Engineering
SJR: 0.202 SNIP: 0.2 CiteScore™: 0.23

ISSN Imprimer: 0040-2508
ISSN En ligne: 1943-6009

Volumes:
Volume 78, 2019 Volume 77, 2018 Volume 76, 2017 Volume 75, 2016 Volume 74, 2015 Volume 73, 2014 Volume 72, 2013 Volume 71, 2012 Volume 70, 2011 Volume 69, 2010 Volume 68, 2009 Volume 67, 2008 Volume 66, 2007 Volume 65, 2006 Volume 64, 2005 Volume 63, 2005 Volume 62, 2004 Volume 61, 2004 Volume 60, 2003 Volume 59, 2003 Volume 58, 2002 Volume 57, 2002 Volume 56, 2001 Volume 55, 2001 Volume 54, 2000 Volume 53, 1999 Volume 52, 1998 Volume 51, 1997

Telecommunications and Radio Engineering

DOI: 10.1615/TelecomRadEng.v66.i12.90
pages 1123-1131

Damaged Forests: Detection Using Airborne SAR Images

V. K. Ivanov
O.Ya. Usikov Institute for Radio Physics and Electronics, National Academy of Sciences of Ukraine 12, Academician Proskura St., Kharkiv 61085, Ukraine
R. E. Paschenko
A. Usikov Institute of Radio Physics and Electronics, National Academy of Sciences of Ukraine, 12, Academician Proskura Str., Kharkiv 61085, Ukraine
O. M. Stadnyk
A. Usikov Institute of Radio Physics and Electronics, National Academy of Sciences of Ukraine, 12, Academician Proskura Str., Kharkiv 61085, Ukraine
S. Ye. Yatsevich
A. Usikov Institute of Radio Physics and Electronics, National Academy of Sciences of Ukraine, 12, Academician Proskura Str., Kharkiv 61085, Ukraine

RÉSUMÉ

A method based on the analysis of fractal dimensions of airborne radar images is proposed to detect forests damages and to classify them by the origin. It includes creating of fractal index field of the image and analyzing of its histogram. Key components in the analysis of airborne microwave SAR images of vegetation are understanding of the fractal dimensions of the images parts and choosing of the range of variation of fractal dimensions for further image segmentation.


Articles with similar content:

Classification of Grammar Networks Used for a Formal Description of Signals and Protocols of Data-Computing Networks
Telecommunications and Radio Engineering, Vol.66, 2007, issue 4
A. V. Nikolaev
BUILDING DETECTION USING PROCESSING OF MONOCHROMATIC EARTH OBSERVATION IMAGE
Telecommunications and Radio Engineering, Vol.77, 2018, issue 3
А. N. Gorobets
Validation of Hyperspectral Data Classification Models
Journal of Automation and Information Sciences, Vol.40, 2008, issue 5
Yuliya V. Shatokhina, Vitaliy A. Yatsenko, Oleg V. Semeniv
Algorithm for Automatic Processing of Facsimiles, Applicable under the Conditions of Expected Uncertainty of the Structure of Hand-Written Objects, Based upon Analysis of Values of Wavelet-Coefficient Distribution in the Frequency -Time Domain
Telecommunications and Radio Engineering, Vol.68, 2009, issue 1
A. A. Minyaev
An Approach to Cryptographic Security of Binary Data on the Basis of Hierarchical Neuron Networks with Distributed Memory
Telecommunications and Radio Engineering, Vol.67, 2008, issue 2
Ivan S. Zakharov, V. N. Lopin