Abonnement à la biblothèque: Guest
Portail numérique Bibliothèque numérique eBooks Revues Références et comptes rendus Collections
Telecommunications and Radio Engineering
SJR: 0.202 SNIP: 0.2 CiteScore™: 0.23

ISSN Imprimer: 0040-2508
ISSN En ligne: 1943-6009

Volume 78, 2019 Volume 77, 2018 Volume 76, 2017 Volume 75, 2016 Volume 74, 2015 Volume 73, 2014 Volume 72, 2013 Volume 71, 2012 Volume 70, 2011 Volume 69, 2010 Volume 68, 2009 Volume 67, 2008 Volume 66, 2007 Volume 65, 2006 Volume 64, 2005 Volume 63, 2005 Volume 62, 2004 Volume 61, 2004 Volume 60, 2003 Volume 59, 2003 Volume 58, 2002 Volume 57, 2002 Volume 56, 2001 Volume 55, 2001 Volume 54, 2000 Volume 53, 1999 Volume 52, 1998 Volume 51, 1997

Telecommunications and Radio Engineering

DOI: 10.1615/TelecomRadEng.v67.i10.10
pages 853-865

Properties of Different Wavelet Filters used for Ultrasound and Mammography Compression

Victor Filippovich Kravchenko
Kotelnikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences, 11-7, Mokhovaya St., Moscow 125009, Russia; Bauman Moscow State Technical University, 5, Vtoraya Baumanskaya St., Moscow 105005 Russia; Scientific and Technological Center of Unique Instrumentation, Russian Academy of Sciences, 15, Butlerova St., Moscow 117342, Russia
Volodymyr Ponomaryov
Instituto Politécnico Nacional, Mexico-city, Mexico
J. L. Sanchez-Ramirez
National Polytechnic Institute of Mexico, Mexico-city


In this paper, the analysis of different Wavelets also including new Wavelets families based on atomic functions are presented, especially for Ultrasound (US) and Mammography (MG) image compression. This way we are able to determine what type of filters Wavelet works better for a specialized compression scheme for this type of images. Key properties: Frequency response, Approximation Order, Projection cosine, and Riesz bounds are determined and compared for the classic Wavelets W9/7 used in standard JPEG2000, Daubechies8, Symlet8, as well as for the complex Kravchenko-Rvachev wavelets ψ(t) based on the Atomic Functions up(t), fup2(t), and eup(t). The comparison results show significantly better performance of novel Wavelets that is justified by experiments and in the investigations of the Key properties.

Articles with similar content:

Fuzzy Ellipsoidal State Filtration Algorithm for a Static Object
Journal of Automation and Information Sciences, Vol.30, 1998, issue 4-5
Nataliya N. Kussul, Gennadiy M. Bakan
Evaluation and Optimization of the Standard JPEG2000 for Compression of Ultrasound Images
Telecommunications and Radio Engineering, Vol.65, 2006, issue 11-15
J. L. Sanchez-Ramirez, C. Juarez-Landin, Volodymyr Ponomaryov
Analysis of Applicability of Neural Networks for Classification of Satellite Data
Journal of Automation and Information Sciences, Vol.39, 2007, issue 3
Alla N. Lavrenyuk, Ekaterina V. Nasuro, Sergey V. Skakun, Olga M. Kussul
Nanoscience and Technology: An International Journal, Vol.6, 2015, issue 3
A. G. Getmanov, Yu. V. Kornev, Lev N. Rabinskiy, M. I. Martirosov
International Journal for Uncertainty Quantification, Vol.6, 2016, issue 3
Gilberto A. Ortiz, Ka Veng Yuen