Abonnement à la biblothèque: Guest
Portail numérique Bibliothèque numérique eBooks Revues Références et comptes rendus Collections
Telecommunications and Radio Engineering
SJR: 0.203 SNIP: 0.44 CiteScore™: 1

ISSN Imprimer: 0040-2508
ISSN En ligne: 1943-6009

Volume 79, 2020 Volume 78, 2019 Volume 77, 2018 Volume 76, 2017 Volume 75, 2016 Volume 74, 2015 Volume 73, 2014 Volume 72, 2013 Volume 71, 2012 Volume 70, 2011 Volume 69, 2010 Volume 68, 2009 Volume 67, 2008 Volume 66, 2007 Volume 65, 2006 Volume 64, 2005 Volume 63, 2005 Volume 62, 2004 Volume 61, 2004 Volume 60, 2003 Volume 59, 2003 Volume 58, 2002 Volume 57, 2002 Volume 56, 2001 Volume 55, 2001 Volume 54, 2000 Volume 53, 1999 Volume 52, 1998 Volume 51, 1997

Telecommunications and Radio Engineering

DOI: 10.1615/TelecomRadEng.v78.i19.80
pages 1759-1770


Oleksandr Dumin
V. Karazin National University of Kharkiv, 4 Svobody Sq., Kharkiv 61022, Ukraine
V. Plakhtii
V. Karazin National University of Kharkiv, 4 Svobody Sq., Kharkiv 61022, Ukraine
O. Prishchenko
V. Karazin National University of Kharkiv, 4 Svobody Sq., Kharkiv 61022, Ukraine
D. Shyrokorad
Zaporizhzhya National Technical University, 64 Zhukovskogo St., 69063, Zaporizhzhya, Ukraine
V. A. Katrich
V. Karazin National University of Kharkiv, 4 Svobody Sq., Kharkiv 61022, Ukraine


The application of artificial neural networks (ANN) for object classification based on data received by impulse radar is analyzed. Instead of spectrum analysis or threshold criterion application, the amplitudes of received impulse electromagnetic field in a definite time and spatial points are processed by the neural network directly to make an object recognition procedure. Several electromagnetic problems and structures of ANN are considered as examples to obtain the layered medium parameter, to find some object and its coordinates in a medium. The stability of the determination of object placement and medium geometrical characteristics are studied in the presence of experimental errors and noises. The normal incidence of short impulse plane wave of Gaussian time form on the complex medium with losses is considered. Finite Difference in Time Domain (FDTD) method is used for obtaining the reflected electromagnetic field above a medium. The amplitudes of the electrical component of the field are the input data for ANN. The thicknesses of one of the layers or distances to an object are the ANN output parameters that are sought for.


  1. Immoreev, I., Samkov, S., and Teh-HoTao, (2005) Short-Distance Ultra-Wideband Radars, IEEE Aerospace and Electronic Systems Magazine, 20(6), pp. 9-14.

  2. Harmuth, H., (1981) Nonsinusoidal Waves for Radar and Radiocommunications, Academic Press, New York.

  3. Callan, R., (1999) The Essence of Neural Networks, Prentice Hall Europe, New York.

  4. Shyrokorad, D., Dumin, O., and Dumina, O., (2008) Time domain analysis of reflected impulse fields by artificial neural network, Proc. IV Conf. on UWBUSIS, Sevastopol, Ukraine, pp. 124-126.

  5. Haykin, S., (1999) Neural Networks, Prentice-Hall, New Jersey.

  6. Daniels, D.J., (2004) Ground Penetrating Radar, IEEE, London.

  7. Hai-Zhong, Yu., Yu-Feng, Ouyang., and Hong, Chen., (2012) Application of Ground Penetrating Radar to Inspect the Metro Tunnel, 14-th International Conference on Ground Penetrating Radar (GPR), Shanghai, China, pp 759-763.

  8. Morgenthaler, A. and Rappaport, C., (2013) Fast GPR Underground Shape Anomaly Detection Using The Semi-Analytic Mode Matching (Samm) Algorithm, IGARSS, pp. 1422-1425.

  9. Turk, A.S., Hocaoglu, K.A., and Vertiy, A.A., (2011) Subsurface Sensing, Hoboken: Wiley.

  10. Cook, J.C., (1960) Proposed monocycle-pulse very high frequency radar for airborne ice and snow measurement, Trans. AIEE Commun. Electron., 79, pp. 588-594.

  11. Varyanitsa-Roshchupkina, L.A. and Pochanin, G.P., (2007) Video Pulse Electromagnetic Wave Diffraction on Subsurface Objects, Telecommunications and Radio Engineering, 66(5), pp. 391-414.

  12. Pochanin, G., Masalov, S., Pochanina, I., Capineri, L. et al., (2016) Modern Trends in Development and Application of the UWB Radar Systems, Proc. 8th International Conference on Ultrawideband and Ultrashort Impulse Signals, , Odesa, Ukraine, pp. 7-115-11.

  13. Prabhat Sharma, Bambam Kumar, Dharmendra Singh, and Gaba, S.P., (2016) Non-metallic pipe detection using SF-GPR: a new approach using Neural Network, IGARSS, pp. 6609-6612.

  14. Pochanin, G.P., Ruban, V.P., Kholod, P.V., Shuba, O.A. et al., (2014) Advances in ground penetrating radars for road surveying, Ultrawideband and Ultrashort Impulse Signals, Kharkiv, Ukraine, pp. 13-18.

  15. Earp, S.L., Hughes, E.S., Elkins, T.J., and Vickers, R., (1996) Ultra-Wideband Ground-Penetrating Radar For the Detection of Buried Metallic Mines, IEEE National Radar Conference, pp. 7-12, Ann Arbor, Michigan, 13-16 May.

  16. Dumin, O., Dumina, O., and Shyrokorad, D., (2009) Time domain analysis of fields reflected from model of human body surface using artificial neural network, Proc. EuCAP, pp. 235-238, Berlin.

  17. Shyrokorad, D., Dumin, O., Dumina O., and Katrich V., (2010) Analysis of Transient Fields Reflected From Model of Human Body Surface Using Convolutional Neural Network, Proc. MMET, Kyiv, Ukraine.

  18. Shyrokorad, D., Dumin, O., Dumina O., Katrich, V., and Chebotarev, V., (2010) Approximating properties of artificial neural network in time domain for the analysis of electromagnetic fields reflected from model of human body surface, Proc. MSMW, Kharkiv, Ukraine.

  19. Andreev, M.V. and Drobakhin, O.O., (2016) Feature of Prony's Method Application for Natural Frequencies Estimation from the Frequency Response, Proc. of 8th International Conference on Ultrawideband and Ultrashort Impulse Signals, Odesa, Ukraine, pp. 18-20.

  20. Dumin, O., Prishchenko, O., Pochanin, G., Plakhtii, V., and Shyrokorad, D., (2018) Subsurface Object Identification by Artificial Neural Networks and Impulse Radiolocation, IEEE Second International Conference on Data Stream Mining & Processing (DSMP-2018), Lviv, Ukraine, pp. 434-437, August 21-25.

  21. Dumin, O.M., Prishchenko, O., Shyrokorad, D., and Plakhtii, V., (2018) Application of UWB Electromagnetic Waves for Subsurface Object Location Classification by Artificial Neural Networks, Proc. 9-th International Conference on Ultrawideband and Ultrashort Impulse Signals (UWBUSIS), Odesa, Ukraine, pp. 290-293.

  22. Dumin, O.M., Plakhtii, V.A., Shyrokorad, D.V., and Prishchenko, O.A., (2019) Signal Processing in UWB Subsurface Radiolocation by Artificial Neural Networks, Proc. IEEE International Scientific and Practical Conference Problems of Infocommunications Science and Technology (PIC S&T2019), Kyiv, Ukraine, pp. 384-387.

  23. Plakhtii, V., Dumin, O., Prishchenko, O., Shyrokorad, D., and Pochanin, G., (2019) Influence of Noise Reduction on Object Location Classification by Artificial Neural Networks for UWB Subsurface Radiolocation, Proc. DIPED, Lviv, Ukraine, pp. 64-68.

  24. Dumin, O., Plakhtii, V., Shyrokorad, D., Prishchenko, O., and Pochanin, G., (2019) UWB subsurface radiolocation for object location classification by artificial neural networks based on discrete tomography approach, Proc. IEEE 2nd Ukraine Conference on Electrical and Computer Engineering (UKRCON-2019), Lviv, Ukraine, pp. 182-187.

  25. Taflove, A. and Hagness, S., (2005) Computational Electrodynamics: The Finite-Difference Time-Domain Method, Artech House, Boston, London.

  26. Rimer, M. and Martinez, T., (2004) Softprop: softmax neural network backpropagation learning, IEEE International Joint Conference on Neural Networks (IEEE Cat. No.04CH37541), Budapest, 2, pp. 979-983.

  27. Le Cun, Y. and Bengio, Y., (1995) Convolutional networks for images, speech, and time series, in: Michael A. Arbib. (eds.), The Handbook of Brain Theory and Neural Networks, Cambridge, pp. 255-258.

Articles with similar content:

Telecommunications and Radio Engineering, Vol.70, 2011, issue 10
O. A. Dumina, V. A. Katrich, Oleksandr Dumin, D. V. Shirokorad
Solitary Resonance in the Diffraction on Impedance Gratings
Telecommunications and Radio Engineering, Vol.57, 2002, issue 5
N. A. Balakhonova, A. V. Kats
Algorithms for Solving Systems of Linear Equations in the Field Fpk
Journal of Automation and Information Sciences, Vol.51, 2019, issue 10
H. I. Hoherchak, Sergey L. Kryvyi
Finite-Element Modeling of Acousto-Optical Devices for Discrete Signal Processing
Telecommunications and Radio Engineering, Vol.67, 2008, issue 11
A. N. Rudyakova, Alexander Lipinsky, V. V. Danilov
Telecommunications and Radio Engineering, Vol.74, 2015, issue 4
O. M. Sharabura