Abonnement à la biblothèque: Guest
Portail numérique Bibliothèque numérique eBooks Revues Références et comptes rendus Collections
Telecommunications and Radio Engineering
SJR: 0.202 SNIP: 0.2 CiteScore™: 0.23

ISSN Imprimer: 0040-2508
ISSN En ligne: 1943-6009

Volumes:
Volume 78, 2019 Volume 77, 2018 Volume 76, 2017 Volume 75, 2016 Volume 74, 2015 Volume 73, 2014 Volume 72, 2013 Volume 71, 2012 Volume 70, 2011 Volume 69, 2010 Volume 68, 2009 Volume 67, 2008 Volume 66, 2007 Volume 65, 2006 Volume 64, 2005 Volume 63, 2005 Volume 62, 2004 Volume 61, 2004 Volume 60, 2003 Volume 59, 2003 Volume 58, 2002 Volume 57, 2002 Volume 56, 2001 Volume 55, 2001 Volume 54, 2000 Volume 53, 1999 Volume 52, 1998 Volume 51, 1997

Telecommunications and Radio Engineering

DOI: 10.1615/TelecomRadEng.v69.i19.40
pages 1725-1733

APPLICATION OF BAYESIAN FORMALISM TO IDENTIFICATION OF LOGICAL-AND-PROBABILISTIC MODELS FOR ESTIMATING THE LEVEL OF INFORMATION SECURITY OF MODERN INFORMATION AND COMMUNICATION NETWORKS

A. N. Nazarov
International Informatization Academy, Moscow, Russian Federation

RÉSUMÉ

Modern engineering approaches to practical implementation of facility-at-risk protection functions in modern information and communication networks are proposed. The proposed notion of gradation of information security functions and their characteristics using Bayesian formalism for statistical data were used to formulate the provisions on the organized identification of the obtained logical-and-probabilistic models so as to better identify the current risk value.

RÉFÉRENCES

  1. Malyuk, A. A., Pazizin, S. V., and Pogozhin, N. S., Vvedenie v zashchitu informatsii v avtomatizirovannykh sistemakh (Introduction into Information Protection in Automated Systems).

  2. Nazarov, A. N., Logical-and-probabilistic models for estimating the level of information security of modern information and communication networks.

  3. Solozhentsev, E. D., Features of the logical-and-probabilistic theory of risk with groups of incompatible events.


Articles with similar content:

STATISTICAL SURROGATE MODELS FOR PREDICTION OF HIGH-CONSEQUENCE CLIMATE CHANGE
International Journal for Uncertainty Quantification, Vol.3, 2013, issue 4
Richard V. Field Jr., Paul Constantine, M. Boslough
STRUCTURAL IDENTIFICATION OF A THERMAL PROCESS USING THE VOLTERRA MODEL
Heat Transfer Research, Vol.45, 2014, issue 5
Safa Chouchane, Kais Bouzrara, Hassani Messaoud
Knowledge Information Model of the Scenario Analysis
Journal of Automation and Information Sciences, Vol.46, 2014, issue 2
Natalya D. Pankratova, Lyubov Yu. Malafeeva
Concept of Detection and Correction of Logic Errors in Implementation of Safety Protocol Profiles
Telecommunications and Radio Engineering, Vol.62, 2004, issue 7-12
V. T. Eremenko
ON THE ROLE OF DATA MINING TECHNIQUES IN UNCERTAINTY QUANTIFICATION
International Journal for Uncertainty Quantification, Vol.2, 2012, issue 1
Chandrika Kamath