Abonnement à la biblothèque: Guest
Journal of Environmental Pathology, Toxicology and Oncology

Publication de 4  numéros par an

ISSN Imprimer: 0731-8898

ISSN En ligne: 2162-6537

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 2.4 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 2.8 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 0.5 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.00049 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.59 SJR: 0.429 SNIP: 0.507 CiteScore™:: 3.9 H-Index: 49

Indexed in

The Protective Role of Cirsilineol against Ovalbumin-Induced Allergic Rhinitis in Mice by Suppression of Inflammation and Oxidative Stress

Volume 40, Numéro 3, 2021, pp. 63-73
DOI: 10.1615/JEnvironPatholToxicolOncol.2021038489
Get accessGet access

RÉSUMÉ

Allergic rhinitis (AR) is a common type of inflammatory disease with symptoms including rhinorrhea, fatigue, sneezing, and disturbed sleep. AR affects nearly 40% of peoples worldwide with the increased numbers of new cases. In this work, the study was conducted to disclose the anti-inflammatory and antiallergic properties of cirsilineol against the ovalbumin (OVA)-sensitized AR in mice. AR was provoked in BALB/c mice through the OVA challenge 30 days along with 10 and 20 mg/kg of cirsilineol treatment. The nasal symptoms, i.e., rubbing and sneezing was monitored after the final OVA challenge. The status of OVA-specific IgE, PGD2, and LTC4 was investigated using assay kits. The status of pro-inflammatory markers also examined using assay kits. The levels of oxidative markers, SOD activity, and pro-inflammatory markers in the spleen mononuclear cells (SMEs) were studied by using respective assay kits. The mRNA expression of TXNIP was assessed using RT-PCR study. The 10 and 20 mg/kg of cirsilineol treatment effectively decreased the sneezing and nasal rubbings in OVA-provoked mice. Cirsilineol also decreased the IgE, PGD2, and LTC4 status in the AR animals. The status of pro-inflammatory markers, i.e., IL-4, IL-5, IL-6, IL-33 and TNF-α was found to be decreased in the cirsilineol administered AR mice. Cirsilineol effectively reduced the ROS and MDA and improved SOD in the OVA-challenged SMCs. The mRNA expression of TXNIP was appreciably suppressed by the cirsilineol treatment. Altogether, these findings proved the beneficial actions of cirsilineol against the OVA-triggered AR in mice. The additional studies on the cirsilineol could lead to the development of new drug for AR management.

RÉFÉRENCES
  1. Graft DF. New therapies for allergic rhinitis. Cleveland Clin J Med. 2002;67(3):165-8.

  2. Zhang Y, Zhang L. Prevalence of allergic rhinitis in China. Allergy Asthma Immunol Res. 2014 Mar;6(2):105.

  3. Aun, MV, Bonamichi-Santos R, Arantes-Costa FM, Kalil J, Giavina-Bianchi P. Animal models of asthma: Utility and limitations. J Asthma Allergy. 2017;10:293-301.

  4. Price D. Asthma and allergic rhinitis: Linked in treatment and outcomes. Ann Thorac Med. 2010;5:63-4.

  5. Kar M, Muluk NB, Bafaqeeh SA, Cingi C. Consensus on the methodology for experimental studies in allergic rhinitis. Int J Pediatr Otorhinolaryngol. 2019;121:68-71.

  6. Brozek JL, Bousquet J, Baena-Cagnani CE, Bonini S, Canonica GW, Casale TB, van Wijk RG, Ohta K, Zuberbier T, Schunemann HJ, Global Allergy and Asthma European Network; Grading of Recommendations Assessment; Development and Evaluation Working Group. Allergic rhinitis and its impact on asthma (ARIA) guidelines: 2010 revision. J Allergy Clin Immunol. 2010;126(3):466-76.

  7. Brozek JL, Bousquet J, Agache L, Agarwal A, Bachert C, Bosnic-Anticevich S. Allergic rhinitis and its impact on asthma (ARIA) guidelines: 2016 revision. J Allergy Clin Immunol. 2017;140(4):950-8.

  8. Okubo K, Kurono Y, Ichimura K, Enomoto T, Okamoto Y, Kawauchi H, Suzaki H, Fujieda S, Masuyama K; Japanese Society of Allergology. Japanese guidelines for allergic rhinitis 2017. Allergol Int. 2017;66(2):205-19.

  9. Shin JH, Kim DH, Kim BY, Kim SW, Hwang SH, Lee J, Kim SW. Anti-Interleukin-9 antibody increases the effect of allergen-specific immunotherapy in murine allergic rhinitis. Allergy Asthma Immunol Res. 2017;9(3): 237-46.

  10. Kim HJ, Lee SH, Jeong S, Hong SJ. Protease-activated receptors 2-antagonist suppresses asthma by inhibiting reactive oxygen species-thymic stromal lymphopoietin inflammation and epithelial tight junction degradation. Allergy Asthma Immunol Res. 2019;11(4):560-71.

  11. Bowler RP, Crapo JD. Oxidative stress in allergic respiratory diseases. J Allergy Clin Immunol. 2002; 110:349-56.

  12. Kohen R, Nyska A. Invited review: Oxidation of biological systems: Oxidative stress phenomena, antioxidants, redox reactions, and methods for their quantification. Toxicol Pathol. 2002;30:620-50.

  13. Khan DA. Allergic rhinitis and asthma: Epidemiology and common pathophysiology. Allergy Asthma Proc. 2014;35:357-61.

  14. Ciprandi G, Marseglia GL, Castagnoli R, Valsecchi C, Tagliacarne C, Caimmi S, Licari A. From IgE to clinical trials of allergic rhinitis. Expert Rev Clin Immunol. 2015;11:13211333.

  15. Akdis M, Akdis CA. Mechanisms of allergenspecific immunotherapy: Multiple suppressor factors at work in immune tolerance to allergens. J Allergy Clin Immunol. 2014;133:621631.

  16. Kakli HA, Riley TD. Allergic rhinitis. Prim Care. 2016;43:465-75.

  17. Qayyum N, Haseeb M, Kim MS, Choi S. Role of thioredoxin-interacting protein in diseases and its therapeutic outlook. Int J Mol Sci. 2021;22(5):2754.

  18. Omar DF, Kamal MM, El-Hefnawy MH, El-Mesallamy HO. Serum vitamin D and its upregulated protein, thioredoxin interacting protein, are associated with beta-cell dysfunction in adult patients with type 1 and type 2 diabetes. Can J Diabetes. 2018;42:588-94.

  19. Nasoohi S, Ismael S, Ishrat T. Thioredoxin-interacting protein (TXNIP) in cerebrovascular and neurodegenerative diseases: Regulation and implication. Mol Neurobiol. 2018;55:7900-20.

  20. Zhang W, Tang R, Ba G, Li M, Lin H. Anti-allergic ant anti-inflammatory effects of resveratrol via inhibiting TX-NIP-oxidative stress pathway in a mouse model of allergic rhinitis. World Allergy Organ J. 2020;13:100473.

  21. May JR, Dolen WK. Management of allergic rhinitis: A review for the community pharmacist. Clin Ther. 2017;39(12):2410-9.

  22. Greiner AN, Hellings PW, Rotiroti G, Scadding GK. Allergic rhinitis. Lancet. 2011;378(9809):2112-22.

  23. Mygind N. Allergic rhinitis. Chem Immunol Allergy. 2014;100:62-8.

  24. Lipworth BJ, Jackson CM. Safety of inhaled and intranasal corticosteroids: Lessons for the new millennium. Drug Saf. 2000;23(1):11-33.

  25. Barberan FA, Hernandez L, Ferreres F, Tomas F. Highly methylated 6-hydroxyflavones and other flavonoids from Thymus piperella. Planta Medica. 1985 Oct;51(5):452-4.

  26. Qiangba CL, Gama QP, Zhan D, Riren BZ. Zhong hua ben cao, volume of Tibetan medicine. Shanghai: Shanghai Science and Technology Press; 2002. p. 260-1 (in Chinese).

  27. Wang J, Sun Y, Li Y, Xu Q. Aqueous extract from aerial parts of Artemisia vestita, a traditional Tibetan medicine, reduces contact sensitivity in mice by down-regulating the activation, adhesion and metalloproteinase production of T lymphocytes. Int Immunopharmacol. 2005;5:407-15.

  28. Kelm MA, Nair MG, Strasburg GM, DeWitt DL. Anti-oxidant and cyclooxygenase inhibitory phenolic compounds from Ocimum sanctum Linn. Phytomedicine. 2000;7:7-13.

  29. Heo HJ, Cho HY, Hong B, Kim HK, Kim EK, Kim BG, Shin DH. Protective effect of 40,5-dihydroxy-30,6,7-trimethoxyflavone from Artemisia asiatica against Abeta-induced oxidative stress in PC12 cells. Amyloid. 2001;8:194-201.

  30. Isobe T, Doe M, Morimoto Y, Nagata K, Ohsaki A. The anti-Helicobacter pylori flavones in a Brazilian plant, Hyptis fasciculata, and the activity of methoxyflavones. Biol Pharm Bull. 2006;29:1039-41.

  31. Sheng X, Sun Y, Yin Y, Chen T, Xu Q. Cirsilineol inhibits proliferation of cancer cells by inducing apoptosis via mitochondrial pathway. J Pharm Pharmacol. 2008;60(11):1523-9.

  32. Pathak G, Singh S, Kumari P, Hussain Y, Raza W, Luqman S, Meena A. Cirsilineol inhibits proliferation of lung squamous cell carcinoma by inducing ROS mediated apoptosis. Food Chem Toxicol. 2020;143:111550.

  33. Liu Y, Lu X, Yu HJ, Hua XY, Cui YH, Huang SK, Liu Z. The expression of osteopontin and its association with Clara cell 10 kDa protein in allergic rhinitis. Clin Exp Allergy. 2010 Nov;40(11):1632-41.

  34. Acar M, Muluk NB, Yigitaslan S, Cengiz BP, Shojaolsadati P, Karimkhani H, Ada S, Berkoz M, Cingi C. Can curcumin modulate allergic rhinitis in rats? J Laryngol Otol. 2016;130(12):1103-9.

  35. Hellings PW, Fokkens WJ, Akdis C. Uncontrolled allergic rhinitis and chronic rhinosinusitis: Where do we stand today? Allergy. 2013;68(1):1-7.

  36. Small P, Kim H. Allergic rhinitis. Allergy Asthma Clin Immunol. 2011;7(Suppl 1):S3.

  37. Meltzer EO, Blaiss MS, Derebery MJ, Mahr TA, Gordon BR, Sheth KK, Simmons AL, Wingertzahn MA, Boyle JM. Burden of allergic rhinitis: Results from the pediatric allergies in America survey. J Allergy Clin Immunol. 2009;124:4370.

  38. Sritipsukho P, Satdhabudha A, Nanthapisal S. Effect of allergic rhinitis and asthma on the quality of life in young Thai adolescents. Asian Pac J Allergy Immunol. 2015;33:222226.

  39. Galli SJ, Tsai M, Piliponsky AM. The development of allergic inflammation. Nature. 2008:454:445-54.

  40. Turner H, Kinet JP. Signalling through the high-affinity IgE receptor Fc epsilon RI. Nature. 1999;402:24-30.

  41. Skoner DP. Allergic rhinitis: Definition, epidemiology, pathophysiology, detection, and diagnosis. J Allergy Clin Immunol. 2001;108:2-8.

  42. Bousquet J, Jacquot W, Vignola AM, Bachert C, Van Cauwenberge P. Allergic rhinitis: A disease remodeling the upper airways? J Allergy Clin Immunol. 2004;113;43-9.

  43. Galli SJ, Tsai M. IgE and mast cells in allergic disease. Nat Med. 2012;18(693):24.

  44. Lewkowich, IP, Rempel JD, HayGlass KT. Antigen-specific versus total immunoglobulin synthesis: Total IgE and IgG1, but not IgG2a levels predict murine antigen-specific responses. Int Arch Allergy Immunol. 2004; 133:145-53.

  45. Gelfand EW. Inflammatory mediators in allergic rhinitis. J Allergy Asthma Clin Immunol. 2004;114:135-138.

  46. Hussain T, Tan B, Yin Y, Blachier F, Tossou MC, Rahu N. Oxidative stress and inflammation: What polyphenols can do for us? Oxid Med Cell Longev. 2016;2016:7432797.

  47. Lambrecht BN. Allergen uptake and presentation by dendritic cells. Curr OpinAllergy Clin Immunol. 2001;1:51-9.

  48. Upham JW. The role of dendritic cells in immune regulation and allergic airway inflammation. Respirology. 2003;8:140-8.

  49. Pawankar RS, Mori C, Ozu, Kimura S. Overview on the pathomechanisms of allergic rhinitis. Asia Pac Allergy. 2011;1:157-67.

  50. Broide DH. Allergic rhinitis: Pathophysiology. Allergy Asthma Proc. 2010;31:370-4.

  51. Zhou J, Yu Q, Chng WJ. TXNIP (VDUP-1, TBP-2): A major redox regulator commonly suppressed in cancer by epigenetic mechanisms. Int J Biochem Cell Biol. 2011 Dec;43(12):1668-73.

  52. Yoshihara E, Masaki S, Matsuo Y, Chen Z, Tian H, Yodoi J. Thioredoxin/Txnip: Redoxisome, as a redox switch for the pathogenesis of diseases. Front Immunol. 2014 Jan;4:514.

  53. Devi TS, Yumnamcha T, Yao F, Somayajulu M, Kowluru RA, Singh LP. TXNIP mediates high glucose-induced mitophagic flux and lysosome enlargement in human retinal pigment epithelial cells. Biol Open. 2019;8(4):038521.

  54. Tinkov AA, Bjorklund G, Skalny AV, Holmgren A, Skalnaya MG, Chirumbolo S, Aaseth J. The role of the thioredoxin/thioredoxin reductase system in the metabolic syndrome: Towards a possible prognostic marker? Cell Mol Life Sci. 2018;75:1567-86.

  55. Lu J, Holmgren A. The thioredoxin antioxidant system. Free Radic Biol Med. 2014;66:75-87.

  56. Ji Cho M, Yoon SJ, Kim W, Park J, Lee J, Park JG, Cho YL, Hun Kim J, Jang H, Park YJ. Oxidative stress-mediated TXNIP loss causes RPE dysfunction. Exp Mol Med. 2019;51:1-13.

  57. Parikh H, Carlsson E, Chutkow WA, Johansson LE, Storgaard H, Poulsen P, Saxena R, Ladd C, Schulze PC, Mazzini MJ. TXNIP regulates peripheral glucose metabolism in humans. PLoS Med. 2007;4:158.

CITÉ PAR
  1. Jing Jiangpeng, Yan Mingzhu, Veeraraghavan Vishnu Priya, Mohan Surapaneni Krishna, Meng Qiang, Cirsilineol inhibits cell growth and induces apoptosis in glioma C6 cells via inhibiting MAPK and PI3K/Akt/mTOR signaling pathways, Applied Nanoscience, 2022. Crossref

  2. Tian Bo, Ma Xin, Jiang Rui, Daphnetin Mitigates Ovalbumin-Induced Allergic Rhinitis in Mice by Regulating Nrf2/HO-1 and TLR4/NF-kB Signaling, American Journal of Rhinology & Allergy, 2022. Crossref

1672 Vues d'articles 19 Téléchargements d'articles Métrique
1672 VUES 19 TÉLÉCHARGEMENTS 2 Crossref CITATIONS Google
Scholar
CITATIONS

Articles avec un contenu similaire:

Restorative Effect of Fucoxanthin in an Ovalbumin-Induced Allergic Rhinitis Animal Model through NF-κB p65 and STAT3 Signaling Journal of Environmental Pathology, Toxicology and Oncology, Vol.38, 2019, issue 4
Shuling Li, Yunhai Ma , Yuan Zhang, Vishnu Priya Veeraraghavan, Surapaneni Krishna Mohan
Tomentosin Inhibits Lipopolysaccharide-Induced Acute Lung Injury and Inflammatory Response by Suppression of the NF-κB Pathway in a Mouse Model of Sepsis Journal of Environmental Pathology, Toxicology and Oncology, Vol.39, 2020, issue 4
Jian Wan, Jie Sun, Conghui Fan, Yongyi Wang, Haijun Zhu
Malvidin Abrogates Oxidative Stress and Inflammatory Mediators to Inhibit Solid and Ascitic Tumor Development in Mice Journal of Environmental Pathology, Toxicology and Oncology, Vol.39, 2020, issue 3
Durairaj Brindha, Krishnamoorthy Kokilavani, Chinnadurai Kathirvelan, KM Sakthivel
Anti-Inflammatory Effect of Mangiferin on an Experimental Model of Allergic Rhinitis through the Inhibition of NF-κB Signaling Pathways Journal of Environmental Pathology, Toxicology and Oncology, Vol.39, 2020, issue 4
Yanhui Wang, Hongjun Sun, Chengchao Cui
PI3K/Akt Pathway and miR-21 are Involved in N-Ethyl-N-Nitrosourea-Induced F1 Mouse Lung Tumorigenesis: Effect of Inositol Hexaphosphate Journal of Environmental Pathology, Toxicology and Oncology, Vol.38, 2019, issue 1
Prakash Tiwari, Satya Sahay, Manuraj Pandey, Krishna P. Gupta
Portail numérique Bibliothèque numérique eBooks Revues Références et comptes rendus Collections Prix et politiques d'abonnement Begell House Contactez-nous Language English 中文 Русский Português German French Spain