Abonnement à la biblothèque: Guest
Portail numérique Bibliothèque numérique eBooks Revues Références et comptes rendus Collections
International Journal of Energetic Materials and Chemical Propulsion
ESCI SJR: 0.149 SNIP: 0.16 CiteScore™: 0.29

ISSN Imprimer: 2150-766X
ISSN En ligne: 2150-7678

International Journal of Energetic Materials and Chemical Propulsion

DOI: 10.1615/IntJEnergeticMaterialsChemProp.2012002669
pages 1-17

PRE- AND POST-COMBUSTION CHARACTERISTICS OF BORON NANOPARTICLES IN AN ETHANOL SPRAY FLAME

Srinibas Karmakar
Jacob Hanberry
Department of Chemical Engineering, Louisiana State University, Baton Rouge, LA 70803, USA
Kerry M. Dooley
Department of Chemical Engineering, Louisiana State University, Baton Rouge, LA 70803, USA
Sumanta Acharya
Illinois Institute of Technology

RÉSUMÉ

Nanoscale metallic and metalloid boron particles have high volumetric heating values and are therefore attractive fuel additives for air-breathing propulsion systems. This paper deals with an experimental investigation of the physical and chemical characteristics of boron nanoparticles before and after combustion in a hydrocarbon (ethanol) spray flame. Several characterization techniques, such as (SEM, TEM), X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), porosimetry, elemental analysis, and thermogravimetric analysis (TGA), have been employed with pre- and post-combustion particles. The results suggest that almost all the injected boron, in an initially mostly amorphous form, is converted into a crystalline oxide upon combustion. As the boron oxides cool, they absorb water to eventually form crystalline H3BO3. The product particles are found to be clusters or aggregates similar in structure to the boron nanoparticles. No evidence of unburnt boron was found in the post-combustion particles.