Abonnement à la biblothèque: Guest
Portail numérique Bibliothèque numérique eBooks Revues Références et comptes rendus Collections
International Journal of Energetic Materials and Chemical Propulsion
ESCI SJR: 0.149 SNIP: 0.16 CiteScore™: 0.29

ISSN Imprimer: 2150-766X
ISSN En ligne: 2150-7678

International Journal of Energetic Materials and Chemical Propulsion

DOI: 10.1615/IntJEnergeticMaterialsChemProp.2011001385
pages 477-492

REDUCED AGGLOMERATION RESULTING FROM NICKEL COATING OF ALUMINUM PARTICLES IN SOLID PROPELLANTS

Yinon Yavor
Department of Mechanical Engineering, Mcgill University, Montreal, QC, Canada; Faculty of Aerospace Engineering, Technion I.I.T., Technion City, Haifa, Israel; Faculty of Mechanical Engineering, Afeka College of Engineering, Tel-Aviv, Israel
Valery Rosenband
Faculty of Aerospace Engineering, Technion- Israel Institute of Technology, Haifa 32000, Israel
Alon Gany
Sylvia and David IA Fine Rocket Propulsion Center and the Aerothermodynamics Lab, Faculty of Aerospace Engineering, Technion – Israel Institute of Technology, Haifa, 3200003, Israel

RÉSUMÉ

This paper examines the effects of nickel coating of aluminum particles on the combustion of aluminized solid propellants. High-speed photography is used in order to capture propellant combustion in various operating pressures. Data analysis reveals a dramatic reduction in the median diameter of ejected particles when nickel-coated aluminum is employed in the propellant. A theoretical model is introduced based on previous works, predicting a decrease in ignition time for aluminum particles coated with nickel. The model indicates that shorter ignition time should lead to the reduction of the agglomeration phenomena, and to a decrease of ejected aluminum agglomerates, in agreement with the experimental findings.


Articles with similar content:

COMBUSTION MECHANISM OF ENERGETIC BINDERS WITH NITRAMINES
International Journal of Energetic Materials and Chemical Propulsion, Vol.11, 2012, issue 5
Valery V. Serushkin, Valery P. Sinditskii, Sergey A. Filatov, Anton N. Chernyi, Viacheslav Yu. Egorshev
CHARACTERIZATION OF SOLID FUEL MASS-BURNING ENHANCEMENT UTILIZING AN X-RAY TRANSLUCENT HYBRID ROCKET MOTOR
International Journal of Energetic Materials and Chemical Propulsion, Vol.6, 2007, issue 6
Eric Boyer, Brian Evans, Nicholas A. Favorito
ADN PROPELLANT TECHNOLOGY
International Journal of Energetic Materials and Chemical Propulsion, Vol.4, 1997, issue 1-6
Larry Merwin, Stan Wood, Alan D. Turner, Carol Mead, May Lee Chan, Gregory Ostrom
CONSTITUTIVE MODELING FOR PLASTICITY OF METAL POWDERS DURING COMPACTION
Journal of Porous Media, Vol.13, 2010, issue 9
Gholamreza Aryanpour, Masoud Farzaneh
SENSITIVITY PROPERTIES AND BURNING RATE CHARACTERISTICS OF HIGH ENERGY DENSITY MATERIALS AND THE PROPELLANTS CONTAINING THESE MATERIALS
International Journal of Energetic Materials and Chemical Propulsion, Vol.5, 2002, issue 1-6
Koh Kobayashi, Kazushige Kato, Shin Matsuura, Shigefumi Miyazaki