Abonnement à la biblothèque: Guest
International Journal of Energetic Materials and Chemical Propulsion

Publication de 6  numéros par an

ISSN Imprimer: 2150-766X

ISSN En ligne: 2150-7678

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 0.7 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 0.7 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 0.1 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.00016 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.18 SJR: 0.313 SNIP: 0.6 CiteScore™:: 1.6 H-Index: 16

Indexed in

ON THE OSCILLATORY BEHAVIOR OF LIQUID PROPELLANT ROCKETS

Volume 7, Numéro 4, 2008, pp. 315-358
DOI: 10.1615/IntJEnergeticMaterialsChemProp.v7.i4.40
Get accessGet access

RÉSUMÉ

Despite many decades of intense study the combustion instability problem remains a major issue in liquid rocket design and development. Similar difficulties are frequently experienced in turbojet thrust augmenters and are anticipated in hypersonic propulsion systems, and especially in scramjets as their development cycle matures. The apparent lack of progress is largely the outcome of an incomplete understanding of the dynamics of the flow field in an injection-driven combustor. What is missing is a self-consistent theoretical framework capable of providing clear physical interpretations of the available experimental data. Of concern is the incomplete and often poorly understood set of energy gain/loss mechanisms used in formulating the unsteady behavior in the analytical models in current use. A fresh approach is described in this paper that provides nonlinear extensions to generalized models representing unsteady energy transport in compressible, rotational flows with viscosity, heat transfer, and distributed combustion heat release. A tightly integrated treatment of coupled acoustic, vortical, and entropic disturbances is employed. In addition to reliable linear stability prediction, the resulting algorithm can accurately represent: 1) time-evolution of the pressure oscillations; 2) wave system limit cycle amplitude; and 3) shifts in the mean field properties coupled to the oscillating flow. The calculations provide information regarding the sensitivity of these features to the geometry and physical parameters describing the engine and injector configuration. This is accomplished with no limitation on the Mach number of the compressible quasi-steady mean flow field. Predicted waveforms in high-amplitude limit cycle oscillations closely approximate those observed experimentally. These capabilities are demonstrated by comparison to measurements from actual systems that have exhibited high-amplitude pressure fluctuations; examples include the well-remembered Rocketdyne F-1 (Saturn V, first stage engine).

CITÉ PAR
  1. Shimizu Taro, Morii Yuhi, Hori Dan, Numerical Study on Intense Tangential Oscillation in a Simulated Liquid Rocket Chamber, AIAA Journal, 52, 8, 2014. Crossref

  2. Kovacic Paul, Batterson Joshua W., Majdalani Joseph, Transverse Vortico-Acoustic Waves in the Presence of Strong Mean Flow Shear Layers, 51st AIAA/SAE/ASEE Joint Propulsion Conference, 2015. Crossref

  3. French Jonathan C., Nozzle Acoustic Dynamics and Stability Modeling, Journal of Propulsion and Power, 27, 6, 2011. Crossref

  4. Jacob Eric, Nonlinear Triggering of Combustion Instability in Solid Rocket Motors, 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, 2012. Crossref

Portail numérique Bibliothèque numérique eBooks Revues Références et comptes rendus Collections Prix et politiques d'abonnement Begell House Contactez-nous Language English 中文 Русский Português German French Spain