Abonnement à la biblothèque: Guest
International Journal of Energetic Materials and Chemical Propulsion

Publication de 6  numéros par an

ISSN Imprimer: 2150-766X

ISSN En ligne: 2150-7678

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 0.7 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 0.7 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 0.1 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.00016 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.18 SJR: 0.313 SNIP: 0.6 CiteScore™:: 1.6 H-Index: 16

Indexed in

POLYMER NANOCOMPOSITE ABLATIVES−PART II

Volume 19, Numéro 2, 2020, pp. 125-187
DOI: 10.1615/IntJEnergeticMaterialsChemProp.2020030268
Get accessGet access

RÉSUMÉ

A review of recently published literature was conducted to provide a complete picture of the current state of the polymer nanocomposite ablative branch of materials science. These are materials used as thermal protection systems (TPS) for the leading edges of hypersonic vehicles, rocket nozzle and internal insulation of solid rocket motors (SRM), and missile launch facility structures. This paper summarizes the most recent research efforts in this field by scientists globally. The polymers investigated in these papers are primarily phenolic resin, a few epoxy resin, some ethylene propylene diene monomer (EPDM), and a paucity of publications based on hydrogenated nitrile butadiene rubber (HNBR), natural rubber (NR), silicone rubber, and carbon/carbon. A variety of nanoparticles were used, such as nanoclays, graphene, multi-walled carbon nanotubes (MWCNTs), and several nanoceramics. Several microfiber reinforcements were used as well. Ablation mechanisms were studied and proposed by the researchers on their polymer nanocomposite ablatives.

RÉFÉRENCES
  1. Ahmad, M.S., Farooq, U., and Subhani, T., (2015) Effect of Multiwall Carbon Nanotubes on the Ablative Properties of Carbon Fiber-Reinforced Epoxy Matrix Composites, Arabian J. Sci. Eng., 40(5), pp. 1529-1538.

  2. Amirsardari, Z., Aghdam, R.M., Salavati-Niasari, M., and Shakhesi, S., (2015b) Preparation and Charac-terization of Nanoscale ZrB2/Carbon-Resol Composite for Protection against High-Temperature Corrosion, J. Therm. Anal. Calorim., 120(3), pp. 1535-1541.

  3. Amirsardari, Z., Mehdinavaz-Aghdam, R., Salavati-Niasari, M., and Jahannama, M.R., (2016) Influence of ZrB2 Nanoparticles on the Mechanical and Thermal Behaviors of Carbon Nanotube Reinforced Resol Composite, J. Mater. Sci. Technol., 32(7), pp. 611-616.

  4. Amirsardari, Z., Mehdinavaz, R., Aghdam, R., Salavati-Niasari, M., and Shakhesi, S., (2015a) Enhanced Thermal Resistance of GO/C/Phenolic Nanocomposite by Introducing ZrB2 Nanoparticles, Compos. PartB: Eng., 76, pp. 174-179.

  5. Badhe, Y., Balasubramanian, K., and Gupta, R., (2015) Cost-Effective, Low Density, Carbon Soot Doped Resorcinol Formaldehyde Composite for Ablative Applications, RSC Adv., 5(30), pp. 23622-23634.

  6. Bahramian, A.R., (2013) Pyrolysis and Flammability Properties ofNovolac/Graphite Nanocomposites, Fire Safety J., 61, pp. 265-273.

  7. Bahramian, A.R. and Astaneh, R.A., (2014) Improvement of Ablation and Heat Shielding Performance of Carbon Fiber Reinforced Composite Using Graphite and Kaolinite Nanopowders, Iran. Polymer J., 23(12), pp. 979-985.

  8. Chen, Y., Chen, P., Hong, C., Zhang, B., and Hui, D., (2013) Improved Ablation Resistance of Carbon-Phenolic Composites by Introducing Zirconium Diboride Particles, Compos. Part B: Eng., 47, pp. 320-325.

  9. Cheng, H., Hong, C., Zhang, X., Xue, H., Meng, S., and Han, J., (2016) Super Flame-Retardant Lightweight Rime-Like Carbon-Phenolic Nanofoam, Sci. Rep., 6, p. 33480.

  10. Corral, E.L. and Walker, L.S., (2010) Improved Ablation Resistance of C-C Composites Using Zirconium Diboride and Boron Carbide, J. Eur. Ceram. Soc., 30(11), pp. 2357-2364.

  11. Ding, J., Huang, Z., Qin, Y., Shi, M., Huang, C., and Mao, J., (2015) Improved Ablation Resistance of Carbon-Phenolic Composites by Introducing Zirconium Silicide Particles, Compos. Part B: Eng., 82, pp. 100-107.

  12. Eslami, Z., Yazdani, F., and Mirzapour, M.A., (2015) Thermal and Mechanical Properties of Phenolic-Based Composites Reinforced by Carbon Fibres and Multiwall Carbon Nanotubes, Compos. Part A: Appl. Sci. Manuf, 72, pp. 22-31.

  13. Ghelich, R., Aghdam, R.M., and Torknik, F.S., (2015) Carbothermal Reduction Synthesis of ZrB2 Nanofibers via Pre-Oxidized Electrospun Zirconium N-Propoxide, Ceram. Int., 41(5), pp. 6905-6911.

  14. Ghelich, R., Aghdam, R.M., and Jahannama, M.R., (2017) Elevated Temperature Resistance of SiC-Carbon/Phenolic Nanocomposites Reinforced with Zirconium Diboride Nanofibers, J. Comp. Mater, 52(9), pp. 1239-1251.

  15. Guan, Y., Zhang, L.X., Zhang, B.Z., and Lu, Y.L., (2011) Study on Ablative Properties and Mechanisms of Hydrogenated Nitrile Butadiene Rubber (HNBR) Composites Containing Different Fillers, Polym. Degrad. Stab, 96(5), pp. 808-817.

  16. Gupta, R. and Kandasubramanian, B., (2015) Hybrid Caged Nanostructure Ablative Composites of Octaphenyl-POSS/RF as Heat Shields, RSC Adv., 5(12), pp. 8757-8769.

  17. Iqbal, N., Sagar, S., Khan, M.B., and Rafique, H.M., (2014) Elastomeric Ablative Nanocomposites Used in Hyperthermal Environments, Polym. Eng. Sci., 54(2), pp. 255-263.

  18. Khanlari, S. and Kokabi, M., (2011) Thermal Stability, Aging Properties, and Flame Resistance of NR-Based Nanocomposite, J. Appl. Polymer Sci, 119(2), pp. 855-862.

  19. Koo, J.H., (2016) Fundamentals, Properties, and Applications of Polymer Nanocomposites, Cambridge, UK: Cambridge University Press.

  20. Koo, J.H., (2019) Ablation Properties of Polymer Nanocomposites, in Polymer Nanocomposites: Processing, Characterization, and Applications, New York, NY: McGraw-Hill Professional Publishing, pp. 349-434.

  21. Koo, J.H., Natali, M., Lisco, B., Yao, E., and Schellhase, K., (2018) In Situ Ablation Recession and Thermal Sensor for Thermal Protection Systems, J. Spacecr. Rockets, 55(4), pp. 783-796.

  22. Koo, J.H., Natali, M., Tate, J., and Allcorn, E., (2013) Polymer Nanocomposites as Ablative Materials: A Comprehensive Review, Int. J. Energ. Mater. Chem. Propuls., 12(2), pp. 119-162.

  23. Le Costaouec, J.-F. and Perea, P., (2017) Method of Forming Borides in Carbon Composites, US Patent 9,725,803, Filed July 2, 2015, and Issued August 8,2017.

  24. Le Costaouec, J.-F. and Perea, P., (2018) Systems and Methods for Carbon-Carbon Materials Incorporating Yttrium and Zirconium Compounds, US Patent 9970497, Filed December 17,2015, and Issued May 14, 2018.

  25. Marra, F., Tirillo, J., Pulci, G., Sarasini, F., Paglia, L., Genova, V., and Valente, T., (2016) Production and Characterization of Carbon-Phenolic Ablative Materials Modified with Nano-Fillers, J. Appl. Biomater. Funct. Mater., 14(1), pp. 84-128.

  26. Mirzapour, A., Asadollahi, M.H., Baghshaei, S., and Akbari, M., (2014) Effect of Nanosilica on the Microstructure, Thermal Properties and Bending Strength of Nanosilica Modified Carbon Fiber/Phenolic Nanocomposite, Compos. Part A: Appl. Sci. Manuf, 63, pp. 159-167.

  27. Mirzapour, M.A., Haghighat, H.R., and Eslami, H.R., (2013) Effect of Zirconia on Ablation Mechanism of Asbestos Fiber/Phenolic Composites in Oxyacetylene Torch Environment, Ceram. Int., 39(8), pp. 9263-9272.

  28. Naderi, A., Mazinani, S., Ahmadi, S.J., Sohrabian, M., and Arasteh, R., (2014) Modified Thermo-Physical Properties of Phenolic Resin/Carbon Fiber Composite with Nano Zirconium Dioxide, J. Therm. Anal. Calorim., 117(1), pp. 393-401.

  29. Natali, M., Koo, J.H., Allcorn, E., and Ezekoye, O.A., (2014) An In Situ Ablation Recession Sensor for Carbon/Carbon Ablatives based on Commercial Ultra-Miniature Thermocouples, Sens. Actuators, B, 196, pp. 46-56.

  30. Natali, M., Rallini, M., Paglia, D., Kenny, J., and Torre, L., (2013) EPDM based Heat Shielding Materials for Solid Rocket Motors: A Comparative Study of Different Fibrous Reinforcements. Polym. Degrad. Stab., 98(11), pp. 2131-2139.

  31. National Standard Committee of China, (1996) GJB 323 A-96. Standard Test Method for Oxyacetylene Ablation Testing of Thermal Insulation Materials, National Standard Committee of China.

  32. Paglia, L., Genova, V., Marra, F., Valente, T., and Pulci, G., (2016) Manufacturing and Characterization of Carbon-Phenolic Ablative Materials Modified by Nano-Filler Addition, 8th Ablation Workshop, University of Arizona, Tucson, AZ, USA, October 5-6.

  33. Park, J.-M., Kwon, D.J., Wang, Z.J., Roh, J.U., Lee, W.I., Park, J.K., and Devries, K.L., (2014) Effects of Carbon Nanotubes and Carbon Fiber Reinforcements on Thermal Conductivity and Ablation Properties of Carbon/Phenolic Composites, Compos. Part B: Eng., 67, pp. 22-29.

  34. Paydayesh, A. and Kokabi, M., (2015) Highly Filled Organoclay/Phenolic Resin Nanocomposite as an Ablative Heat Shield Material, Iran. Polymer J., 24(5), pp. 389-397.

  35. Pulci, G., Paglia, L., Genova, V., Bartuli, C., Valente, T., Pulci, G., and Marra, F., (2018) Low Density Ablative Materials Modified by Nanoparticles Addition: Manufacturing and Characterization, Compos. Part A: Appl. Sci. Manuf., 109, pp. 330-337.

  36. Pulci, G., Genova, V., Marra, F., Valente, T., and Pulci, G., (2016) Manufacturing and Characterization of Nano-Composite Ablative Materials, J. Appl. Biomater. Funct. Mater, 14(3), pp. 2-16.

  37. Rallini, M., Torre, L. Kenny, J.M., and Natali, M., (2017) Effect of Boron Carbide Nanoparticles on the Thermal Stability of Carbon/Phenolic Composites, Polym. Compos., 38(9), pp. 1819-1827.

  38. Robert, T.M., Chandran, M.S., Jishnu, S., Sunitha, K., Rajeev, R.S., Mathew, D., and Nair, C.P., (2015) Nanoclay Modified Silica Phenolic Composites: Mechanical Properties and Thermal Response under Simulated Atmospheric Re-Entry Conditions, Polym. Adv. Technol., 26(1), pp. 104-109.

  39. Saeed, S., Hakeem, S., Faheem, M., Alvi, R.A., Karooq, K., Hussain, S.T., and Ahmad, S.N., (2013) Effect of Doping of Multi-Walled Carbon Nanotubes on Phenolic based Carbon Fiber Reinforced Nanocomposites, J. Phys.: Conf. Series, 439, p. 012017.

  40. Saghar, A., Khan, M., Sadiq, I., and Subhani, T., (2018) Effect of Carbon Nanotubes and Silicon Carbide Particles on Ablative Properties of Carbon Fiber Phenolic Matrix Composites, Vacuum, 148, pp. 124-126.

  41. Si, J., Li, J., Wang, S., Li, Y., and Jing, X., (2013) Enhanced Thermal Resistance of Phenolic Resin Composites at Low Loading of Graphene Oxide, Compos. Part A: Appl. Sci. Manufacturing, 54, pp. 166-172.

  42. Singh, S., Guchhait, P.K., Bandyopadhyay, G.G., and Chaki, T.K., (2013) Development of Polyimide-Nanosilica Filled EPDM based Light Rocket Motor Insulator Compound: Influence of Polyimide-Nanosilica Loading on Thermal, Ablation, and Mechanical Properties, Compos. Part A: Appl. Sci. Manuf., 44, pp. 8-15.

  43. Srikanth, I., Padmavathi,N., Kumar, S., Ghosal, P., Kumar, A., and Subrahmanyam, C., (2013)Mechanical, Thermal and Ablative Properties of Zirconia, CNT Modified Carbon/Phenolic Composites, Compos. Sci. Technol., 80, pp. 1-7.

  44. Subha, S., Singh, D., and Venkatanarayanan, P.S., (2018) Thermal, Ablation and Mechanical Properties of Carbon-Phenolic Composites Reinforced with Zirconia Coated Graphene Nanoplatelets, Mater. Res. Express, 5(1), p. 014008.

  45. Wang, F., Huang, Z., Qin, Y., and Li, Y., (2015) Thermal Behavior of Phenolic-Based Ceramizable Composites Modified by Nano-Aluminum Oxide, High Perform. Polym., 28(9), pp. 1096-1101.

  46. Wang, Z.-J., Kwon, D.-J., Gu, G.-Y., Lee, W.-I., and Park, J.-M., (2014) Ablative and Mechanical Evaluation of CNT/Phenolic Composites by Thermal and Microstructural Analyses, Compos. Part B: Eng., 60, pp. 597-602.

  47. Yang, D., Zhang, W., Jiang, B.Z., and Guo, Y., (2013) Silicone Rubber Ablative Composites Improved with Zirconium Carbide or Zirconia, Compos. Part A: Appl. Sci. Manufacturing, 44, pp. 70-77.

  48. Yee, C., Ray, M., Tang, F., Wan, J., Koo, J.H., and Natali, M., (2014) In Situ Ablation Recession Sensor for Ablative Materials based on Ultraminiature Thermocouples, J. Spacecr. Rockets, 51(6), pp. 1789-1796.

  49. Yu, H., Liu, J., Wen, X., Jiang, Z., Wang, Y., Wang, L., Zheng, J., Fu, S., and Tang, T., (2011) Charring Polymer Wrapped Carbon Nanotubes for Simultaneously Improving the Flame Retardancy and Mechanical Properties of Epoxy Resin, Polymer, 52(21), pp. 4891-4898.

  50. Yum, S.H., Kim, S.H., Lee, W.I., and Kim, H., (2015) Improvement of Ablation Resistance of Phenolic Composites Reinforced with Low Concentrations of Carbon Nanotubes, Compos. Sci. Technol., 121, pp. 16-24.

CITÉ PAR
  1. Loganathan Tamil Moli, Hameed Sultan Mohamed Thariq, Ahsan Qumrul, Jawaid Mohammad, Naveen Jesuarockiam, Md Shah Ain Umaira, Abu Talib Abd. Rahim, Basri Adi Azriff, Jaafar Che Nor Aiza, Effect of Cyrtostachys renda Fiber Loading on the Mechanical, Morphology, and Flammability Properties of Multi-Walled Carbon Nanotubes/Phenolic Bio-Composites, Nanomaterials, 11, 11, 2021. Crossref

  2. Wu Hao, Koo Joseph H., High-temperature polymers and their composites for extreme environments: a review, AIAA SCITECH 2022 Forum, 2022. Crossref

Portail numérique Bibliothèque numérique eBooks Revues Références et comptes rendus Collections Prix et politiques d'abonnement Begell House Contactez-nous Language English 中文 Русский Português German French Spain