Abonnement à la biblothèque: Guest
International Journal of Energetic Materials and Chemical Propulsion

Publication de 6  numéros par an

ISSN Imprimer: 2150-766X

ISSN En ligne: 2150-7678

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 0.7 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 0.7 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 0.1 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.00016 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.18 SJR: 0.313 SNIP: 0.6 CiteScore™:: 1.6 H-Index: 16

Indexed in

FORMATION OF CONSOLIDATED NANOTHERMITE MATERIALS USING SUPPORT SUBSTRATES AND/OR BINDER MATERIALS

Volume 11, Numéro 5, 2012, pp. 401-412
DOI: 10.1615/IntJEnergeticMaterialsChemProp.2013002401
Get accessGet access

RÉSUMÉ

Consolidated nanothermite felts with reduced sensitivity to electrostatic discharge for safer handling were produced without a significant reduction of the nanothermite reactivity. A polyester felt material with a thickness of 1.65 mm was easily infiltrated with a nanothermite slurry and the dried felt material prevented small particles from breaking off during handling. Combustion of 100 mg of the dried felt nanothermite in a closed-volume pressure cell generated higher pressure than those generated by nanothermite granules produced using a similar water-based processing method. The nanothermite felts also effectively absorbed nitrocellulose as a gasifying agent without a significant decrease in reaction rate. High-density reactive composites, based on tantalum metal fuel with a specific gravity of 16.6 and nanoscale Bi2O3 oxidizer, were formed with densities in excess of 5.0 g/cm3. THV 220A, a fluorocarbon polymer with oxidizing properties, was used as an effective binder in the composite. These materials were combined in acetone with tetrafluoroethylene, hexafluoropropylene, and vinylidene (THV), and after drying were pressed into pellets. Combustion of an 800-mg pellet lasted 5 s and was accompanied by the formation and ejection of hot particles from the surface of the pellet. Differential scanning calorimetry analysis determined that the ignition of the high-density composite occurs below 620 K, which is lower than common in nanothermite systems.

Portail numérique Bibliothèque numérique eBooks Revues Références et comptes rendus Collections Prix et politiques d'abonnement Begell House Contactez-nous Language English 中文 Русский Português German French Spain